Expression and Localization of Heat Shock Protein 70 in Frozen-thawed IVF and Nuclear Transferred Bovine Embryos

  • Chung, K.S. (Animal Resources Research Center, Konkuk Univ) ;
  • Choi, Y.J. (Animal Resources Research Center, Konkuk University) ;
  • Song, S.J. (Animal Resources Research Center, Konkuk University) ;
  • Do, J.T. (Animal Resources Research Center, Konkuk University) ;
  • Yoon, B.S. (Animal Resources Research Center, Konkuk University) ;
  • Kim, Y.J. (Animal Resources Research Center, Konkuk University) ;
  • Lee, H.T. (Animal Resources Research Center, Konkuk University)
  • Published : 2002.12.01

Abstract

The objective of this study was to assess the developmental potential in vitro produced embryos frozen-thawed with the various containers, and also examined expression and localization of heat shock protein 70 at these embryos. For the vitrification, 2-cell, 8-cell and blastocyst stage embryos produced by in vitro fertilization (IVF) and nuclear transfer (NT) were exposed the ethylene glycol 5.5 M freezing solution (EC 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop, and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min. and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid and cryo-loop. However, survival rates by straw were relatively lower than other containers. The use of cryo-loop resulted in only survival of nuclear transferred embryos (43.7%). Also, there embryos after IVF or NT were analysed by semi-quantitive reverse transcription-polymerase chain reaction (RT- PCR) methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNh were higher thawed embryos than control embryos. Immunocytochemistry used to localize the hsp 70 protein in embryos. Two and 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some frozen-thawed embryos. However, in the control, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform In distribution. Therefore, this result suggests that the exploiting Hsp 70 in the early embryos may be role for protection of stress condition for increase viability of embryos within IVF, NT and there frozen-thawed embryos.

Keywords

References

  1. Anderson, R. L. 1998. Stress proteins and apoptosis in prenatal development, cancer and medicine. Cell stress & Chaperones, 3:209-212 https://doi.org/10.1379/1466-1268(1998)003<0209:SPAAIP>2.3.CO;2
  2. Christians, E., Michel, E., Adenot, P., Mezger, Y., Rallu, M., Morange, M. & Renaud, J.-P. 1997. Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation. Mol. Cell. BioI., 17:778-88
  3. Collas, P. and Barnes, F. L. 1994. Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Mol. Reprod. Dev., 38(3):264-7 https://doi.org/10.1002/mrd.1080380306
  4. Dix, D. J., Garges, J. B. and Hong, R. L. 1998. Inhibition of hsp70-1 and hsp70-3 expression disrupts preimplantation embryogenesis and heightens embryo sensitivity to arsenic. Mol. Reprod. Dev., 51:373-380 https://doi.org/10.1002/(SICI)1098-2795(199812)51:4<373::AID-MRD3>3.0.CO;2-E
  5. Edwards, J. L. and Hansen, P. J. 1996. Elevated temperature increases heat shock protein 70 synthesis in bovine two-cell embryos and compromises function of maturing oocytes. BioI. Reprod., 55:340-346 https://doi.org/10.1095/biolreprod55.2.341
  6. Edwards, J. L. and Hansen, P. J. 1997. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol. Reprod. Dev., 46:138-145 https://doi.org/10.1002/(SICI)1098-2795(199702)46:2<138::AID-MRD4>3.0.CO;2-R
  7. Edwards, J. L., Ealy, A. D., Monterroso, V. H. and Hansen, P. J. 1997. Ontogeny of temperature- regulated heat shock protein 70 synthesis in preimplantation bovine embryos. Mol. Reprod. Dev., 48:25-33 https://doi.org/10.1002/(SICI)1098-2795(199709)48:1<25::AID-MRD4>3.0.CO;2-R
  8. Ellis, R. J. and van der Vies, S. M. 1991. Molecular chaperones. Annu. Rev. Biochem., 60: 321-347 https://doi.org/10.1146/annurev.bi.60.070191.001541
  9. Frei, R. E., Schultz, G. A. and Church, R. B. 1989. Qualitative and quantitative changes in protein synthesis occur at the 8-16-cell stage of embryogenesis in the cow. J. Reprod. Fertil., 86:637:41
  10. Hahnel, A. C., Gifford, D. J., Heikkila, J. J. & Schultz, G. A. 1986. Expression of the major heat shock protein (hsp70) family during early mouse embryo development. Teratog. Carcinog. Mutagen., 6:493-510 https://doi.org/10.1002/tcm.1770060603
  11. Hendry, J. and Kola, I. 1991. Thermolability of mouse oocytes is due to the lack of expression and/or inducibility of hsp70. Mol. Reprod. Dev., 28:1-8
  12. Hochi, S., Maruyama, K. and Oguri, N. 1996. Direct transfer of equine blastocysts frozen -thawed in the presence of ethylene glycol and sucrose. Theriogenology, 46: 1217-1224
  13. Hong, S. W., Chung, H. M., Lim, J. M., Ko, J. J., Yoon, T. K., Yee, B. and Chs, K. Y. 1999. Improved human oocyte development after vitrification: a comparison of thawing method. Fertil. Steril., 72:142-14 https://doi.org/10.1016/S0015-0282(99)00199-5
  14. Hyttel, P., Viuff, D., Avery, B., Laurincik, J., Greve, T., Kopecny, V., Flechon, J. E., Camous, S. and Fulka, J. 1989. Nucleologenesis and the onset of transcription in the eight-cell bovine embryo:fine-structural autoradiographic study. Mol. Reprod. Dev., 1:79-90
  15. Kopecny, V., Flechon, J. E., Camous, S. & Fulka, J. 1989. Nucleologenesis and the onset of transcription in the eight cell bovine embryo: fine-structural autoradiographic study. Mol. Reprod. Dev., 1:79-90
  16. Lane, M., Schoolcraft, W. B. and Gardner, D. K. 1999. Vitrification of mouse and human blastocysts using a novel cryoloop containerless technique. Fertil. Steril., 72(6):1073-8 https://doi.org/10.1016/S0015-0282(99)00418-5
  17. Lindquist, S. and Craig, E. A. 1988. The heat -shock proteins. Annu. Rev. Genet., 22:631-77 https://doi.org/10.1146/annurev.ge.22.120188.003215
  18. Matwee, C, Betts, D. H. and King, W. A. 1999. Developmental regulation of apoptosis in the early bovine embryo. Theriogenology, 51: 185
  19. Muller, W. U., Li, G. C. and Goldstein, L. S. 1985. Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stage of mouse embryo development. Int. J. Hyperthermia, 1:97-102 https://doi.org/10.3109/02656738509029277
  20. Martino, A., Songsasen, N. and Leibo, S. P. 1996a. Development into blastocysts of bovine oocytes Cryopreserved by ultra-rapid cooling BioI. Reprod., 54:1059-1069
  21. Martino, A., Pollard, J. W. and Leibo, S. P. 1996b. Effect of chilling development bovine oocytes on their developmental competence. Mol. Reprod. Dev., 45:503-512
  22. Neuer, A., Spandofer, S. D., Giraldo, P. 1999. Heat shock protein expression during gametogenesis. Infect. Dis. Obstet. Gynecol., 7:10-16
  23. Neuer, A., Spandorfer, S. D., Giraldo, P., Jeremias, J., Dieterle, S., Komeeva, I., Liu, H. C, Rosenwaks, Z. and Witkins, S. S. 1999. Heat shock protein expression during gametogenesis and embryogenesis. Infect. Dis. Obstet., Gynecol., 7:10-16
  24. Parsell, D. A. and Lindquist, S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev., Genet. 27:437-96
  25. Plante, L. and King, W. A. 1994. Light and electron microscopic analysis of bovine embryos derived by in vitro and in vivo fertilization. J. Assist. Reprod. Genet., 11:515-29 https://doi.org/10.1007/BF02216032
  26. Samali, A. and Orrenius, S. 1998. Heat shock proteins: regulation of stress response and apoptosis. Cell Stress & Chaperones, 3:228-236 https://doi.org/10.1379/1466-1268(1998)003<0228:HSPROS>2.3.CO;2
  27. Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Northey, D. L., Schutzkus, V., First, N. L. 1994. Inhibition of protein kinases after an induced calcium transient causes transition of bovine oocytes to embryonic cycles without meiotic completion. Dev. BioI., 166(2):n9-39
  28. Van Stekelenburg-Harnmers, A. E. P., Rebel, H. G., van inzen, W. G., de Loos, F. A. M., Drost, M., Mummery, C. L., Weima, S. M. & Trounson, A. O. 1994. Stage-specific appearan ce of the mouse antigen TEC-3 in normal and nuclear transfer bovine embryos: re-expression after nuclear transfer. Mol. Reprod. Dev., 37:27 -33 https://doi.org/10.1002/mrd.1080370105
  29. Welch, R. J. 1987. The mammalian heat shock (or stress) response: a cellular defense mechanism. Adv. Exp. Med. BioI., 225:287-304
  30. Welch, R. J. and Feramisco, J. R. 1982. Purification of the major mammalian heat shock proteins. J. BioI. Chern., 257:14949-14959
  31. Welch, R. J. and Feramisco, J. R. 1984. Nuclear and nucleolar localization of the nOOO-dalton heat shock protein in heat-shocked mammalian cells. J. BioI. Chern., 259:4501-4513
  32. Wrenzychi, C., Hermann, D., Camwath, J. W. and Neimann, H. 1998. Expression of RNA from developmentally important genes in preimplantation bovine embryos produced in TCM supplemented with BSA. J. Reprod. Fertil., 112: 387-398
  33. Xu, K. P., Yadav, B. R., Rorie, R. W., Plante, L., Betteridge, K. J. and King, W. A. 1992. Development and viability of bovine embryos derived from oocytes matured and fertilized in vitro and co-cultured with bovine oviductal epithelial cells. J. Reprod. Fertil., 94:33-43 https://doi.org/10.1530/jrf.0.0940033