• Title/Summary/Keyword: NP-hard Problem

Search Result 366, Processing Time 0.022 seconds

Applying the COMSOAL Heuristic to the Optimal Vehicle Routing Selection (COMSOAL 휴리스틱을 이용한 최적 운송경로 탐색)

  • 이성열
    • Korean Management Science Review
    • /
    • v.20 no.1
    • /
    • pp.141-148
    • /
    • 2003
  • Vehicle routing problem Is known to be a NP-hard problem, and is traditionally solved by some heuristic approaches. This paper investigates the application of the computer method COMSOAL to the optimal vehicle routing problem. This paper discusses the adaptation of the COMSOAL approach to the known set of simple vehicle routing example problem. The results show that the COHSOAL can be a good possible approach to solve the vehicle routing problem.

Constraint Programming Approach for a Course Timetabling Problem

  • Kim, Chun-Sik;Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.9-16
    • /
    • 2017
  • The course timetabling problem is a problem assigning a set of subjects to the given classrooms and different timeslots, while satisfying various hard constraints and soft constraints. This problem is defined as a constraint satisfaction optimization problem and is known as an NP-complete problem. Various methods has been proposed such as integer programming, constraint programming and local search methods to solve a variety of course timetabling problems. In this paper, we propose an iterative improvement search method to solve the problem based on constraint programming. First, an initial solution satisfying all the hard constraints is obtained by constraint programming, and then the solution is repeatedly improved using constraint programming again by adding new constraints to improve the quality of the soft constraints. Through experimental results, we confirmed that the proposed method can find far better solutions in a shorter time than the manual method.

An Approximation Algorithm based on First-fit Strategy for Template Packing Problem (First-fit 전략을 사용하는 템플럿 패킹 문제를 위한 근사 알고리즘)

  • Song, Ha-Joo;Kwon, Oh-Heum
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.443-450
    • /
    • 2016
  • This paper deals with a kind of packing problem of which the goal is to compose one or more templates which will be used to produce the items of different types. Each template consists of a fixed number of slots which are assigned to the different types of items and the production of the items is accomplished by printing the template repeatedly. The objective is to minimize the total number of produced items. This problem is known to be NP-hard. We present a polynomial time approximation algorithm which has a constant approximation ratio. The proposed algorithm is based on the well-known first-fit strategy.

The Server Disconnection Problem on a Ring Network (링 네트워크에서의 서버 단절문제에 대한 해법)

  • Myung, Young-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.35 no.1
    • /
    • pp.87-91
    • /
    • 2009
  • In the server disconnection problem, a network with m servers and their users is given and an attacker is to destroy a set of edges to maximize his net gain defined as the total disconnected utilities of the users minus the total edge-destruction cost. The problem is known to be NP-hard. In this paper, we study the server disconnection problem restricted to a ring network. We present an efficient combinatorial algorithm that generates an optimal solution in polynomial time.

A Proposal of an New Algorithm for RWA Problem on Multi-optical Network (다중 광 네트워크에서 RWA문제를 해결하는 새로운 알고리즘 제안)

  • 강성수;김창근;김순석;탁한호
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.451-458
    • /
    • 1999
  • This paper considers the problem of routing connections in multi-optical tree network using WDM (Wavelength Division Multiplexing), where each connection between a pair of nodes in the network is assigned a path through the network and a wavelength on that path, such that connections whose paths share a common link in the network are assigned different wavelengths. The problem of optimal colouring of paths on multi-optical network is NP-hard[1], but if that is the colouring of all paths, then there exists an efficient polynomial time algorithm. In this paper, using divided & conquer method we gave an efficient algorithm to assign wavelengths to the all paths of a tree network based on the theory of (7) and our time complexity $O(n^4log\; n)$.

  • PDF

Maximum Kill Selection Algorithm for Weapon Target Assignment (WTA) Problem (무기 목표물 배정 문제의 최대 치사인원 선택 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.221-227
    • /
    • 2019
  • It has long been known that weapon target assignment (WTA) problem is NP-hard. Nonetheless, an exact solution can be found using Brute-Force or branch-and bound method which utilize approximation. Many heuristic algorithms, genetic algorithm particle swarm optimization, etc., have been proposed which provide near-optimal solutions in polynomial time. This paper suggests polynomial time algorithm that can be obtain the optimal solution of WTA problem for the number of total weapons k, the number of weapon types m, and the number of targets n. This algorithm performs k times for O(mn) so the algorithm complexity is O(kmn). The proposed algorithm can be minimize the number of trials than brute-force method and can be obtain the optimal solution.

Approximation Algorithm for Multi Agents-Multi Tasks Assignment with Completion Probability (작업 완료 확률을 고려한 다수 에이전트-다수 작업 할당의 근사 알고리즘)

  • Kim, Gwang
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.2
    • /
    • pp.61-69
    • /
    • 2022
  • A multi-agent system is a system that aims at achieving the best-coordinated decision based on each agent's local decision. In this paper, we consider a multi agent-multi task assignment problem. Each agent is assigned to only one task and there is a completion probability for performing. The objective is to determine an assignment that maximizes the sum of the completion probabilities for all tasks. The problem, expressed as a non-linear objective function and combinatorial optimization, is NP-hard. It is necessary to design an effective and efficient solution methodology. This paper presents an approximation algorithm using submodularity, which means a marginal gain diminishing, and demonstrates the scalability and robustness of the algorithm in theoretical and experimental ways.

A Study on Korean Railroad Crew Rostering Problem (철도 승무원 교번표의 운행 사업 배치 문제에 관한 연구)

  • Yang, Tae-Yong;Kim, Young-Hoon;Lee, Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.206-211
    • /
    • 2006
  • This thesis presents railroad crew restoring problem, which is to determine the railroad plan allocation. This problem is constructed that determine the sequence of duties that railroad crews have to perform. We analyze characteristic of this problem and railroad industry. It's hard to consider many constraint conditions. We propose Integer Programming model and easy methodology to be considered all given operation rules. This problem is known to be NP-hard. We develop a genetic algorithm, which is proved to be powerful in solving optimization problems. We proposed the effective mathematical model and algorithm about making crew restoring in real industry.

최대유통문제에서 유전알고리듬을 적용한 치명호 결정방법

  • 정호연;김은영;안재근;박순달
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.282-285
    • /
    • 1998
  • The purpose of this study is to present a method for determining the k most vital arcs in the maximum flow problem using a heuristic method. Generally, the problem which determine the k most vital arcs in maximum flow problem has known as NP-hard. Therefore, in this study we propose a method for determining all the k most vital arcs in maximum flow problem using a genetic algorithm. The proposed algorithm found all alternatives within shorter time than other heuristic methods. The method presented in this study can determine all the alternatives when there exists other alternative solutions.

  • PDF

Inverse Bin-Packing Number Problems: Polynomially Solvable Cases

  • Chung, Yerim
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.25-28
    • /
    • 2013
  • Consider the inverse bin-packing number problem. Given a set of items and a prescribed number K of bins, the inverse bin-packing number problem, IBPN for short, is concerned with determining the minimum perturbation to the item-size vector so that all the items can be packed into K bins or less. It is known that this problem is NP-hard (Chung, 2012). In this paper, we investigate some special cases of IBPN that can be solved in polynomial time. We propose an optimal algorithm for solving the IBPN instances with two distinct item sizes and the instances with large items.