• Title/Summary/Keyword: NP-Hard Problem

Search Result 367, Processing Time 0.025 seconds

A Multi-objective Ant Colony Optimization Algorithm for Real Time Intrusion Detection Routing in Sensor Network (센서 네트워크에서 실시간 침입탐지 라우팅을 위한 다목적 개미 군집 최적화 알고리즘)

  • Kang, Seung-Ho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.5
    • /
    • pp.191-198
    • /
    • 2013
  • It is required to transmit data through shorter path between sensor and base node for real time intrusion detection in wireless sensor networks (WSN) with a mobile base node. Because minimum Wiener index spanning tree (MWST) based routing approach guarantees lower average hop count than that of minimum spanning tree (MST) based routing method in WSN, it is known that MWST based routing is appropriate for real time intrusion detection. However, the minimum Wiener index spanning tree problem which aims to find a spanning tree which has the minimum Wiener index from a given weighted graph was proved to be a NP-hard. And owing to its high dependency on certain nodes, minimum Wiener index tree based routing method has a shorter network lifetime than that of minimum spanning tree based routing method. In this paper, we propose a multi-objective ant colony optimization algorithm to tackle these problems, so that it can be used to detect intrusion in real time in wireless sensor networks with a mobile base node. And we compare the results of our proposed method with MST based routing and MWST based routing in respect to average hop count, network energy consumption and network lifetime by simulation.

Optimal Positioning of the Base Stations in PS-LTE Systems (PS-LTE 환경에서 최적기지국 위치 선정)

  • Kim, Hyun-Woo;Lee, Sang-Hoon;Yoon, Hyun-Goo;Choi, Yong-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.467-478
    • /
    • 2016
  • In this paper, we try to find the optimal locations of NeNB(Nomadic evolved NodeB)s for maximizing the overall throughput of the PS-LTE networks. Since finding optimal locations of all NeNBs in a given area is NP-hard(Non-deterministic Polynomial time-hard) problem, we proposed a PSO-based heuristic approach. In order to evaluate the performance, we conducted two experiments. We compared performance with other schemes such as Exhaustive Search, Random Walk Search, and locating neighboring NeNBs with the same NeNB-to-NeNB distance. The proposed method showed the similar results to the exhaustive search method in terms of locating optimal position and user's data throughput. The proposed method, however, has the fast and consistent convergence time.

Multiview-based Spectral Weighted and Low-Rank for Row-sparsity Hyperspectral Unmixing

  • Zhang, Shuaiyang;Hua, Wenshen;Liu, Jie;Li, Gang;Wang, Qianghui
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.431-443
    • /
    • 2021
  • Sparse unmixing has been proven to be an effective method for hyperspectral unmixing. Hyperspectral images contain rich spectral and spatial information. The means to make full use of spectral information, spatial information, and enhanced sparsity constraints are the main research directions to improve the accuracy of sparse unmixing. However, many algorithms only focus on one or two of these factors, because it is difficult to construct an unmixing model that considers all three factors. To address this issue, a novel algorithm called multiview-based spectral weighted and low-rank row-sparsity unmixing is proposed. A multiview data set is generated through spectral partitioning, and then spectral weighting is imposed on it to exploit the abundant spectral information. The row-sparsity approach, which controls the sparsity by the l2,0 norm, outperforms the single-sparsity approach in many scenarios. Many algorithms use convex relaxation methods to solve the l2,0 norm to avoid the NP-hard problem, but this will reduce sparsity and unmixing accuracy. In this paper, a row-hard-threshold function is introduced to solve the l2,0 norm directly, which guarantees the sparsity of the results. The high spatial correlation of hyperspectral images is associated with low column rank; therefore, the low-rank constraint is adopted to utilize spatial information. Experiments with simulated and real data prove that the proposed algorithm can obtain better unmixing results.

Balancing assembly line in an electronics company

  • 박경철;강석훈;박성수;김완희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1993.10a
    • /
    • pp.12-19
    • /
    • 1993
  • In general, the line balancing problem is defined as of finding an assignment of the given jobs to the workstations under the precedence constraints given to the set of jobs. Usually, the objective is either minimizing the cycle time under the given number of workstations or minimizing the number of workstations under the given cycle time. In this paper, we present a new type of an assembly line balancing problem which occurs in an electronics company manufacturing home appliances. The main difference of the problem compared to the general line balancing problem lies in the structure of the precedence given to the set of jobs. In the problem, the set of jobs is partitioned into two disjoint subjects. One is called the set of fixed jobs and the other, the set of floating jobs. The fixed jobs should be processed in the linear order and some pair of the jobs should not be assigned to the same workstations. Whereas, to each floating job, a set of ranges is given. The range is given in terms of two fixed jobs and it means that the floating job can be processed after the first job is processed and before the second job is processed. There can be more than one range associated to a floating job. We present a procedure to find an approximate solution to the problem. The procedure consists of two major parts. One is to find the assignment of the floating jobs under the given (feasible) assignment of the fixed jobs. The problem can be viewed as a constrained bin packing problem. The other is to find the assignment of the whole jobs under the given linear precedence on the set of the floating jobs. First problem is NP-hard and we devise a heuristic procedure to the problem based on the transportation problem and matching problem. The second problem can be solved in polynomial time by the shortest path method. The algorithm works in iterative manner. One step is composed of two phases. In the first phase, we solve the constrained bin packing problem. In the second phase, the shortest path problem is solved using the phase 1 result. The result of the phase 2 is used as an input to the phase 1 problem at the next step. We test the proposed algorithm on the set of real data found in the washing machine assembly line.

  • PDF

A Template-based Interactive University Timetabling Support System (템플릿 기반의 상호대화형 전공강의시간표 작성지원시스템)

  • Chang, Yong-Sik;Jeong, Ye-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.121-145
    • /
    • 2010
  • University timetabling depending on the educational environments of universities is an NP-hard problem that the amount of computation required to find solutions increases exponentially with the problem size. For many years, there have been lots of studies on university timetabling from the necessity of automatic timetable generation for students' convenience and effective lesson, and for the effective allocation of subjects, lecturers, and classrooms. Timetables are classified into a course timetable and an examination timetable. This study focuses on the former. In general, a course timetable for liberal arts is scheduled by the office of academic affairs and a course timetable for major subjects is scheduled by each department of a university. We found several problems from the analysis of current course timetabling in departments. First, it is time-consuming and inefficient for each department to do the routine and repetitive timetabling work manually. Second, many classes are concentrated into several time slots in a timetable. This tendency decreases the effectiveness of students' classes. Third, several major subjects might overlap some required subjects in liberal arts at the same time slots in the timetable. In this case, it is required that students should choose only one from the overlapped subjects. Fourth, many subjects are lectured by same lecturers every year and most of lecturers prefer the same time slots for the subjects compared with last year. This means that it will be helpful if departments reuse the previous timetables. To solve such problems and support the effective course timetabling in each department, this study proposes a university timetabling support system based on two phases. In the first phase, each department generates a timetable template from the most similar timetable case, which is based on case-based reasoning. In the second phase, the department schedules a timetable with the help of interactive user interface under the timetabling criteria, which is based on rule-based approach. This study provides the illustrations of Hanshin University. We classified timetabling criteria into intrinsic and extrinsic criteria. In intrinsic criteria, there are three criteria related to lecturer, class, and classroom which are all hard constraints. In extrinsic criteria, there are four criteria related to 'the numbers of lesson hours' by the lecturer, 'prohibition of lecture allocation to specific day-hours' for committee members, 'the number of subjects in the same day-hour,' and 'the use of common classrooms.' In 'the numbers of lesson hours' by the lecturer, there are three kinds of criteria : 'minimum number of lesson hours per week,' 'maximum number of lesson hours per week,' 'maximum number of lesson hours per day.' Extrinsic criteria are also all hard constraints except for 'minimum number of lesson hours per week' considered as a soft constraint. In addition, we proposed two indices for measuring similarities between subjects of current semester and subjects of the previous timetables, and for evaluating distribution degrees of a scheduled timetable. Similarity is measured by comparison of two attributes-subject name and its lecturer-between current semester and a previous semester. The index of distribution degree, based on information entropy, indicates a distribution of subjects in the timetable. To show this study's viability, we implemented a prototype system and performed experiments with the real data of Hanshin University. Average similarity from the most similar cases of all departments was estimated as 41.72%. It means that a timetable template generated from the most similar case will be helpful. Through sensitivity analysis, the result shows that distribution degree will increase if we set 'the number of subjects in the same day-hour' to more than 90%.

On Deploying Relays for Connected Indoor Sensor Networks

  • Zhu, Yanmin;Xue, Cuiyao;Cai, Haibin;Yu, Jiadi;Ni, Lei;Li, Minglu;Li, Bo
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.335-343
    • /
    • 2014
  • This paper considers the crucial problem of deploying wireless relays for achieving a connected wireless sensor network in indoor environments, an important aspect related to the management of the sensor network. Several algorithms have been proposed for ensuring full sensing coverage and network connectivity. These algorithms are not applicable to indoor environments because of the complexity of indoor environments, in which a radio signal can be dramatically degraded by obstacles such as walls. We first prove theoretically that the indoor relay placement problem is NP-hard. We then predict the radio coverage of a given relay deployment in indoor environments. We consider two practical scenarios; wire-connected relays and radio-connected relays. For the network with wire-connected relays, we propose an efficient greedy algorithm to compute the deployment locations of relays for achieving the required coverage percentage. This algorithm is proved to provide a $H_n$ factor approximation to the theoretical optimum, where $H_n=1+{\frac{1}{2}}+{\cdots}+{\frac{1}{n}}={\ln}(n)+1$, and n is the number of all grid points. In the network with radio-connected relays, relays have to be connected in an ad hoc mode. We then propose an algorithm based on the previous algorithm for ensuring the connectivity of relays. Experimental results demonstrate that the proposed algorithms achieve better performance than baseline algorithms.

Identifying Responsive Functional Modules from Protein-Protein Interaction Network

  • Wu, Zikai;Zhao, Xingming;Chen, Luonan
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.271-277
    • /
    • 2009
  • Proteins interact with each other within a cell, and those interactions give rise to the biological function and dynamical behavior of cellular systems. Generally, the protein interactions are temporal, spatial, or condition dependent in a specific cell, where only a small part of interactions usually take place under certain conditions. Recently, although a large amount of protein interaction data have been collected by high-throughput technologies, the interactions are recorded or summarized under various or different conditions and therefore cannot be directly used to identify signaling pathways or active networks, which are believed to work in specific cells under specific conditions. However, protein interactions activated under specific conditions may give hints to the biological process underlying corresponding phenotypes. In particular, responsive functional modules consist of protein interactions activated under specific conditions can provide insight into the mechanism underlying biological systems, e.g. protein interaction subnetworks found for certain diseases rather than normal conditions may help to discover potential biomarkers. From computational viewpoint, identifying responsive functional modules can be formulated as an optimization problem. Therefore, efficient computational methods for extracting responsive functional modules are strongly demanded due to the NP-hard nature of such a combinatorial problem. In this review, we first report recent advances in development of computational methods for extracting responsive functional modules or active pathways from protein interaction network and microarray data. Then from computational aspect, we discuss remaining obstacles and perspectives for this attractive and challenging topic in the area of systems biology.

Efficient Multicast Routing on BCube-Based Data Centers

  • Xie, Junjie;Guo, Deke;Xu, Jia;Luo, Lailong;Teng, Xiaoqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4343-4355
    • /
    • 2014
  • Multicast group communication has many advantages in data centers and thus is widely used by many applications. It can efficiently reduce the network traffic and improve the application throughput. For the multicast application in data centers, an essential problem is how to find a minimal multicast tree, which has been proved to be NP-hard. In this paper, we propose an approximation tree-building method for the minimal multicast problem, named HD(Hamming Distance)-based multicast tree. Consider that many new network structures have been proposed for data centers. We choose three representative ones, including BCube, FBFLY, and HyperX, whose topological structures can be regarded as the generalized hypercube. Given a multicast group in BCube, the HD-based method can jointly schedule the path from each of receiver to the only sender among multiple disjoint paths; hence, it can quickly construct an efficient multicast tree with the low cost. The experimental results demonstrate that our method consumes less time to construct an efficient multicast tree, while considerably reduces the cost of the multicast tree compared to the representative methods. Our approach for BCube can also be adapted to other generalized hypercube network structures for data centers after minimal modifications.

Combined Artificial Bee Colony for Data Clustering (융합 인공벌군집 데이터 클러스터링 방법)

  • Kang, Bum-Su;Kim, Sung-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • Data clustering is one of the most difficult and challenging problems and can be formally considered as a particular kind of NP-hard grouping problems. The K-means algorithm is one of the most popular and widely used clustering method because it is easy to implement and very efficient. However, it has high possibility to trap in local optimum and high variation of solutions with different initials for the large data set. Therefore, we need study efficient computational intelligence method to find the global optimal solution in data clustering problem within limited computational time. The objective of this paper is to propose a combined artificial bee colony (CABC) with K-means for initialization and finalization to find optimal solution that is effective on data clustering optimization problem. The artificial bee colony (ABC) is an algorithm motivated by the intelligent behavior exhibited by honeybees when searching for food. The performance of ABC is better than or similar to other population-based algorithms with the added advantage of employing fewer control parameters. Our proposed CABC method is able to provide near optimal solution within reasonable time to balance the converged and diversified searches. In this paper, the experiment and analysis of clustering problems demonstrate that CABC is a competitive approach comparing to previous partitioning approaches in satisfactory results with respect to solution quality. We validate the performance of CABC using Iris, Wine, Glass, Vowel, and Cloud UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KABCK (K-means+ABC+K-means) is better than ABCK (ABC+K-means), KABC (K-means+ABC), ABC, and K-means in our simulations.

Energy-Aware Traffic Engineering in Hybrid SDN/IP Backbone Networks

  • Wei, Yunkai;Zhang, Xiaoning;Xie, Lei;Leng, Supeng
    • Journal of Communications and Networks
    • /
    • v.18 no.4
    • /
    • pp.559-566
    • /
    • 2016
  • Software defined network (SDN) can effectively improve the performance of traffic engineering and will be widely used in backbone networks. Therefore, new energy-saving schemes must take SDN into consideration; this action is extremely important owing to the rapidly increasing energy consumption in telecom and Internet service provider (ISP) networks. Meanwhile, the introduction of SDN in current networks must be incremental in most cases, for technical and economic reasons. During this period, operators must manage hybrid networks in which SDN and traditional protocols coexist. In this study, we investigate the energy-efficient traffic engineering problem in hybrid SDN/Internet protocol (IP) networks. First, we formulate the mathematical optimization model considering the SDN/IP hybrid routing mode. The problem is NP-hard; therefore, we propose a fast heuristic algorithm named hybrid energy-aware traffic engineering (HEATE) as a solution. In our proposed HEATE algorithm, the IP routers perform shortest-path routing by using distributed open shortest path first (OSPF) link weight optimization. The SDNs perform multipath routing with traffic-flow splitting managed by the global SDN controller. The HEATE algorithm determines the optimal setting for the OSPF link weight and the splitting ratio of SDNs. Thus, the traffic flow is aggregated onto partial links, and the underutilized links can be turned off to save energy. Based on computer simulation results, we demonstrate that our algorithm achieves a significant improvement in energy efficiency in hybrid SDN/IP networks.