• 제목/요약/키워드: NOx storage

검색결과 36건 처리시간 0.034초

공존 환원제가 NOx 흡장촉매의 NOx 흡$\cdot$ 탈착에 미치는 영향 (Effects for Coexistent Reductant to NOx Adsorption and Desorption of the NOx Storage Catalyst)

  • 이춘희;최병철
    • 한국자동차공학회논문집
    • /
    • 제13권5호
    • /
    • pp.181-187
    • /
    • 2005
  • The behavior of fox adsorption and desorption of the NOx storage catalyst supported on Ba additive were studied by the TPA/TPD experiments and reactivity tests. Applying the transient responses and NOx TPA/TPD test by CLD were effective methods to analyze the characteristics of the NOx storage catalyst. NOx variation of the NOx storage catalyst in the lean air/fuel conditions according to temperature was dominated by NOx adsorption and desorption rather than catalytic reduction. The presence of reductants in the lean mixture promoted the NOx desorption at the $500^{\circ}C$ higher temperature. The temperatures for maximum NOx conversion with CH4 and $C_3H_6$ as a rich spike reductant appear around $500^{\circ}C\;and\; 400^{\circ}C$ respectively.

REDUCTION CHARACTERISTICS OF NOx STORAGE CATALYST FOR LEAN-BURN NATURAL GAS VEHICLES

  • Lee, C.H.;Choi, B.C.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.667-674
    • /
    • 2007
  • Various types of NOx storage catalysts for NGV's were designed, manufactured, and tested in this work on a model gas test bench. As in most of other studies on NOx storage catalyst, alkaline earth metal barium(Ba) was used as the NOx adsorbing substance. The barium-based experimental catalysts were designed to contain different amounts of Ba and precious metals at various ratios. Reaction tests were performed to investigate the NOx storage capacity and the NOx conversion efficiency of the experimental catalysts. From the results, it was found that when Ba loading of a catalyst was increased, the quantity of NOx stored in the catalyst increased in the high temperature range over 350. With more Ba deposition, the NOx conversion efficiency as well as its peak value increased in the high temperature range, but decreased in the low temperature range. The best of de-NOx catalyst tested in this study was catalyst B, which was loaded with 42.8 g/L of Ba in addition to Pt, Pd and Rh in the ratio of 7:7:1. In the low temperature range under $450^{\circ}C$, the NOx conversion efficiencies of the catalysts were lower when $CH_4$, instead of either $C_3H_6$ or $C_3H_8$, was used as the reductant.

Ni, Ru-ZSM-5를 첨가한 NSR 촉매의 NOx 정화 특성 (Characteristics of NOx Reduction on NSR(NOx Storage and Reduction) Catalyst Supported by Ni, Ru-ZSM-5 Additives)

  • 최병철;이춘희;정종우
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.105-111
    • /
    • 2007
  • In this study, we investigated the conversion performance of de-NOx catalyst for lean-burn natural gas engine. As a de-NOx catalyst, NOx storage reduction catalyst was composed of Pt, Pd and Rh with washcoat including Ba and Ni, Ru-ZSM-5. Ni, Ru-ZSM-5, which was regarded as a NOx direct decomposition catalyst, was made up of ion exchanged ZSM-5 by 5wt.% Ni or Ru. The performance of de-NOx catalyst was evaluated by NOx storage capacity and catalytic reduction in air/fuel, $\lambda=1.6$. The catalytic reaction was also observed when the added fuel was supplied to fuel rich atmosphere by fuel spike period of 5 seconds. The NOx conversion of the catalysts with Ni-ZSM-5 or Ru-ZSM-5 was mainly caused by the effect of NOx adsorption of Ba rather than the catalytic reduction of Ni, Ru-ZSM-5. Ni, Ru-ZSM-5 catalysts can not use for the NSR catalyst because they have quick process in thermal deactivation.

희박 천연가스 자동차용 NOx 흡장촉매와 TWC의 NOx 반응특성 비교 (Comparison of NOx Reduction Characteristics of NOx Storage Catalyst and TWC for Lean-burn Natural Gas Vehicles)

  • 최병철;정우남;이춘희
    • 한국자동차공학회논문집
    • /
    • 제12권5호
    • /
    • pp.79-84
    • /
    • 2004
  • We evaluated the reduction performance of NOx storage catalyst and TWC for lean-burn natural gas engine by the model gas. The method of unsteady state reaction was used to compare with reduction performances of NOx storage catalyst and TWC. It was found that the effective parameter was rich spike duration, temperature of the model gas. In the presence of $CO_2$ and $H_2O$ in the reaction mixture was decreased the NOx reduction performance.

Bench-Flow Reactor System을 이용한 Lean NOx Trap 촉매의 특성 연구 (Study of Characterization for Lean NOx Trap Catalysts Utilizing a Bench-Flow Reactor System)

  • 윤천석;김학용
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.179-189
    • /
    • 2008
  • The performance of Lean NOx Trap (LNT) based on the catalysts of Pt/K/Ba/$\gamma-Al_2O_3$ with proprietary washcoat formulation is studied using a bench flow reactor system. To investigate the effect of temperature and gas hourly space velocity (GHSV) on the nitrogen oxides (NOx) trapping capacity as well as NOx breakthrough time and final ratio of $NO_2$ to NO of LNT, series of adsorption isotherms are carried out with simulated exhaust gases of the lean burn engines. Since typical operation of LNT requires periodic regeneration with a short rich excursion, where the stored or trapped NOx is released and subsequently reduced to $N_2$, the effect of the duration of lean and rich phase and type of reductants on the NOx conversion is investigated. NOx storage capacity and breakthrough time obtained from adsorption isotherms shows a volcano-type dependence on the temperature with a maximum NOx storage capacity occurring $350^{\circ}C$ and with a maximum breakthrough time occurring $400^{\circ}C$ at all GHSVs investigated in this study. Also, maximum ratio of $NO_2$ to NO is obtained at $400^{\circ}C$ with a GHSV of $75,000\;hr^{-1}$ Lean/rich cycle of 100 s lean and 5 s rich used with a concentration of 1.33% of $H_2$ and 4% of CO in the rich phase is found to be optimum at operating temperature of $350^{\circ}C$ and a GHSV of $50,000\;hr^{-1}$.

Experimental studies on the diesel engine urea-SCR system using a double NOx sensor system

  • Tang, Wei;Cai, Yixi;Wang, Jun
    • Environmental Engineering Research
    • /
    • 제20권4호
    • /
    • pp.397-402
    • /
    • 2015
  • SCR has been popularly approved as one of the most effective means for NOx emission control in heavy-duty and medium-duty vehicles currently. However, high urea dosing would lead to ammonia slip. And $NH_3$ sensor for vehicle emission applications has not been popularly used in real applications. This paper presents experimental studies on the diesel engine urea-SCR system by using a double NOx sensor system that is arranged in the downstream of the SCR catalyst based on ammonia cross-sensitivity. It was shown that the NOx conversion efficiency rised as $NH_3/NOx$ increases and the ammonia slip started from the $NH_3/NOx$ equal to 1.4. The increase of temperature caused high improvement of the SCR reaction rate while the space velocity had no obvious change. The ammonia slip was in advance as catalyst temperature or space velocity increase and the ammonia storage reduced as catalyst temperature or space velocity increase. The NOx real-time conversion efficiency rised as the ammonia accumulative storage increase and reached the maximum value gradually.

린번 천연가스자동차용 NOx 흡장촉매의 열화특성 (Aging Characteristics of NOx Storage and Reduction Catalyst for Lean-bum Natural Gas Vehicles)

  • 최병철;이춘희
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.147-152
    • /
    • 2007
  • This study investigates the aging characteristics of NOx storage and reduction(NSR) catalyst on the emission conditions of lean burn natural gas vehicles. We designed various NSR catalysts using by the double-layer washcoat technology to increase of a surface area and a thermal durability performance of the catalysts. The experiments were conducted with 3 kinds of the NSR catalysts, which were manufactured using by a honeycomb cordierite substrate. It was found that Ba is weak in the thermal aging because it has lower melting temperature than that of precious metals (PMs). The suitable loading amount of Ba in this study should be about 42 g/L from the results of the NOx adsorption and the NOx reduction efficiency. The major reason in deactivation of the NSR catalyst is the decrease of the adsorption site owing to the agglomeration and sintering of Ba rather than PM aging by hydrothermal aging. It was confirmed by results of BET, SEM and TEM.

Urea-SCR 시스템의 Map 기반 Open Loop 제어알고리즘 개발 (Development of Map based Open Loop Control Algorithm for Urea - SCR System)

  • 함윤영;박용성
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.50-56
    • /
    • 2011
  • To meet the NOx limit without a penalty of fuel consumption, Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, map based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. The basic urea quantity set-value which was calculated using the look up tables of engine out NOx, exhaust flow rate and optimum NSR resulted in NOx reduction of 80% and the average $NH_3$ slip of 24 ppm and maximum of 79 ppm. In order to reduce $NH_3$ slip, $NH_3$ storage control algorithm was applied to correct the basic urea quantity and reduced $NH_3$ slip levels to the average 15 ppm and maximum 49 ppm while keeping NOx reduction of 76%. With high and increasing SCR temperature, the $NH_3$ storage capacity decreases, which leads to $NH_3$ slip. The resulting $NH_3$ slip peak can be avoided by stopping or significantly reducing the urea injection during the SCR temperature gradient is over $30^{\circ}C/min$.

Dynamic Characteristics of a Urea SCR System for NOx Reduction in Diesel Engine

  • Nam, Jeong-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.235-242
    • /
    • 2007
  • This paper discusses dynamic characteristics of a urea-SCR (Selective Catalytic Reduction) system. The urea flow rate to improve NOx conversion efficiency is generally determined by parameters such as catalyst temperature and space velocity. The urea-SCR system was tested in the various engine operating conditions governing the raw NOx emission levels, space velocity. and SCR catalyst temperature. These experiments include cold-transients to determine catalyst light-off temperature and urea flow rate transients. Likewise. ammonia storage dynamics was also investigated. The cold-transient results indicate the light-off temperature of the catalysts used in these experiments was $200-220^{\circ}C$. The ammonia storage and urea flow rate transients all indicate very slow dynamics (on the order of seconds) which presents control challenges for mobile applications. The results presented in this paper should provide an excellent starting point in developing a functional in-vehicle urea-SCR system.