• Title/Summary/Keyword: NOx gas

Search Result 1,120, Processing Time 0.027 seconds

An Experimental Stduy on NOx Reduction in Exhaust Gas from Diesel Engine with Plasma (플라즈마를 이용한 디젤엔진 배기가스 중의 NOx 저감에 관한 실험적 연구)

  • 조기현;황의현
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.83-90
    • /
    • 1999
  • To remove nitrogen oxides(NOx) in exhaust gas of diesel engine, three-way catalytic process with plasma discharger has great possbilities. Characteristics of NOx removal depends on NO conversion to $NO_2$ and/or $HNO_3$ due to high activation energies for NO oxidationand reduction. NOx removal efficiency by using three-way catalytic with plasma dischager indicated about 50% at 40 watt power consumption condition.

  • PDF

REDUCTION CHARACTERISTICS OF NOx STORAGE CATALYST FOR LEAN-BURN NATURAL GAS VEHICLES

  • Lee, C.H.;Choi, B.C.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.667-674
    • /
    • 2007
  • Various types of NOx storage catalysts for NGV's were designed, manufactured, and tested in this work on a model gas test bench. As in most of other studies on NOx storage catalyst, alkaline earth metal barium(Ba) was used as the NOx adsorbing substance. The barium-based experimental catalysts were designed to contain different amounts of Ba and precious metals at various ratios. Reaction tests were performed to investigate the NOx storage capacity and the NOx conversion efficiency of the experimental catalysts. From the results, it was found that when Ba loading of a catalyst was increased, the quantity of NOx stored in the catalyst increased in the high temperature range over 350. With more Ba deposition, the NOx conversion efficiency as well as its peak value increased in the high temperature range, but decreased in the low temperature range. The best of de-NOx catalyst tested in this study was catalyst B, which was loaded with 42.8 g/L of Ba in addition to Pt, Pd and Rh in the ratio of 7:7:1. In the low temperature range under $450^{\circ}C$, the NOx conversion efficiencies of the catalysts were lower when $CH_4$, instead of either $C_3H_6$ or $C_3H_8$, was used as the reductant.

The Catalytic Combustor for Gas Turbines (가스터빈 촉매연소기의 개발 현황)

  • Lee, Dong-Hun;Lee, Kang-Yeop;Choi, Seong-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.265-272
    • /
    • 2003
  • Some catalytic reactors for industrial/generation gas turbines were reviewed and investigated to understand the current status and future prospect for ultra low NOx catalytic gas turbine combustor. Catalytic reactor which was applied to 1${\sim}$10MW class gas turbine has achieved the ultra low emission corresponding to less than 3ppm NOx and 10ppm CO. But the durability and sizing flexibility of catalyst is needed to improve the catalyst performance for commercial gas turbine operation.

  • PDF

Characteristics of NOx Emission with Flue Gas Dilution in Air and Fuel Sides

  • Cho, Eun-Seong;Chung, Suk Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2303-2309
    • /
    • 2004
  • Flue gas recirculation (FGR) is a method widely adopted to control NOx in combustion system. The recirculated flue gas decreases flame temperature and reaction rate, resulting in the decrease in thermal NO production. Recently, it has been demonstrated that the recirculated flue gas in fuel stream, that is, the fuel induced recirculation (FIR), could enhance a much improved reduction in NOx per unit mass of recirculated gas, as compared to the conventional FGR in air. In the present study, the effect of FGR/FIR methods on NOx reduction in turbulent swirl flames by using N$_2$ and CO$_2$ as diluent gases to simulate flue gases. Results show that CO$_2$ dilution is more effective in NO reduction because of large temperature drop due to the larger specific heat of CO$_2$ compared to N$_2$ and FIR is more effective to reduce NO emission than FGR when the same recirculation ratio of dilution gas is used.

Combustion and NOx Emission Characteristics of the Gas Turbine Combustor Burning Medium-Btu Gas as Alternative Fuel (중발열량 가스 대체 시 가스터빈 연소기의 연소 및 NOx 배출 특성)

  • Lee, Chan;Seo, Je-Young
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.320-327
    • /
    • 2003
  • A CFD (Computational fluid Dynamics) research is conducted for the investigation of the fuel alteration of MBTU (medium-Btu) gas in IGCC gas turbine combustor. The computational analysis method of the gas turbine combustor is constructed by incorporating MBTU gas reaction and fuel NOx models into commercial CFD code. With the use of the present analysis method, comparisons are made on the flow velocity, the chemical species and the temperature distributions, and on the flame shape and behavior of gas turbine combustor firing natural gas and MBTU gases (coal gas, heavy residue oil gas). Furthermore, the NOx formation characteristics and the turbine matching condition of the combustor are analyzed. Based on the computed analysis results, the present study provides the directions for the redesign and the design modification of IGCC gas turbine combustor firing MBTU gas as alternative fuel.

Fundamental Study on the Development of the EGR Efficiency (Part I: Effects of Reformer Gas Addition in $CH_4/air$ Premixed Flames) (다양한 연료의 EGR 성능개선에 관한 기초연구(Part I: 메탄/air 예혼합화염에서 RG의 첨가효과))

  • Lee, Chang-Eon;Hwang, Cheol-Hong;Tak, Young-Jo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • In this study, the effect of reformer gas(RG) on the performance development of the exhaust gas recirculation(EGR) was investigated numerically in $CH_4/air$ premixed flame. Typically EGR is used to reduce the flame temperature and NOx emission, whereas RG can be used to improve the flame stability, such as homing velocity. This competitive relationship is focused in this study. As a result, it can be identified that the adjustments of EGR and RG ratio can achieve the low NOx emission and the similar flame stability to pure $CH_4/air$ premixed flame simultaneously.

  • PDF

Effect of H2/CO Ratio, Dilution Ratio, and Methane/Syngas Ratio on Combustion Characteristics of Syngas Turbine (H2/CO비, 희석량, 메탄/석탄가스비가 합성가스용 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.59-60
    • /
    • 2012
  • This paper describes gas turbine combustion characteristics of synthetic gas which is mainly composed of hydrogen and carbon monoxide. The combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, liner and dump plane, and flame structure were investigated when changing when changing $H_2:CO$ ratio, dilution ratio, and $CH_4:syngas$ ratio. From the results, quantitative relationships are derived between key aspects of combustion performance, notably NOx emission. It is concluded that NOx emission of syngas is strongly influenced by the diluent heat capacity and combustion instability. Moreover, NOx control method using diluents such as $N_2$, $CO_2$, steam is verified.

  • PDF

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part II. Analysis of NOx formation mechanism (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part II. NOx 생성기구 분석)

  • Cho, Seo-Hee;Kim, Gyeong-Mo;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.4
    • /
    • pp.39-47
    • /
    • 2020
  • Flue gas recirculation(FGR) is an effective combustion technique for reducing nitrogen oxides(NOx) and is applied in various fields of low-pollution combustion. Continuing the previous study, a numerical analysis was conducted to identify changes of flame characteristics and NOx formation mechanism with applying FGR technique in CH4/air premixed counterflow flames. NOx emitted was divided into four main reaction paths(thermal NO, prompt NO, N2H and N2O), showing relatively the production rate of NO with the recirculation ratio. As a result, thermal NO contributed greatly to the overall NO whereas the effect of N2H was minimal. In addition, emission index of NO was compared as the recirculation ratio increased by modifying the UC San Diego mechanism to examine the contribution of thermal NO.

Effect of Recirculation of Rotary Kiln Exhaust Gas for the Carbonation of Lime on the Combustion Conditions and the Amounts of NOx (생석회 탄산화를 위한 회전로 배가스 재순환이 연소 및 NOx 발생양에 미치는 영향)

  • Lee Man-Seung;Lee Si-Hyunh
    • Resources Recycling
    • /
    • v.12 no.1
    • /
    • pp.41-47
    • /
    • 2003
  • In order to improve the hydration resistance of lime in the air at room temperature, carbonation and hydration experiments have been conducted. Carbonation of the surface of lime by about 6 wt% was needed to suppress the hydration of lime used in steel-making. The effect of recirculation of rotary kiln exhaust gas for the carbonation of lime on the combustion temperature and NOx concentration was analyzed by thermodynamics. From the thermodynamic calculation results, it was frond that the equi-librium combustion temperature and NOx concentration decreased with increasing volume percentage of exhaust gas.

A Study of the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.696-701
    • /
    • 2018
  • The nitrogen oxides generated during combustion reactions have a great influence on the generation of acid rain and fine dust. As an NOx reduction method, exhaust gas recirculation combustion using Coanda nozzles capable of recirculating a large amount of exhaust gas with a small amount of air has recently been utilized. In this study, for the burner outlet with dual end opening, the use of a recirculation burner was investigated for the distribution of the pressure, streamline, temperature, combustion reaction rate and nitrogen oxides using computational fluid analysis. The gas mixed with the combustion air and the recirculated exhaust gas flow in the tangential direction of the circular cylinder burner, so that there is a region with low pressure in the vicinity of the fuel nozzle exit. As a result, a reverse flow is formed in the central portion of the burner near the center of the circular cylinder burner and the exhaust gas is discharged to the outside region of the circular cylinder burner. The combustion reaction occurs on the right side of the burner and the temperature and NOx distribution are relatively higher than those on the left side of the burner. It was found that the average NOx production decreased from an air flow ratio of 1.0 to 1.5. When the air flow ratio is 1.8, the NOx production increases abruptly. It is considered that the NOx production reaction increases exponentially with temperature when the air ratio is more than 1.5 and the NOx production reaction rate increases rapidly on the right-hand side of the burner.