• Title/Summary/Keyword: NOx 생성량

Search Result 68, Processing Time 0.025 seconds

A Simulation Method for Predicting the Performance and the NOx Level of Gas Turbine System (가스터빈 시스템의 성능 및 NOx 배출 예측을 위한 모사방법)

  • Lee, Han-Goo;Kang, Seung-Jong;Lee, Chan
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.28-35
    • /
    • 1994
  • 가스터빈 사이클의 성능 및 NOx 배출물 생성량 예측을 위한 모사 프로그램을 개발하였다. 압축기 및 터빈은 등엔트로피 과정으로, 연소기는 Thermal NOx 생성을 수반하는 연소모형으로서 가정하였다. 또한 터빈 냉각을 위한 추출공기량과 냉각방식이 성능에 미치는 적절한 상관 관계식을 도입하여 평가하였다. 본 성능평가 모델을 이용하여 예측된 결과와 실험결과간의 비교를 통하여 모델의 타당성을 검증하였고, 증기 분사량, 터빈 냉각변수 및 압축비 변화에 따른 예측결과를 통하여 가스터빈 시스템 최적 운전 및 설계기준을 제시하였다.

  • PDF

스월러를 이용한 가스터빈 엔진의 유동 및 분무 특성에 관한 수치적 연구

  • 박종훈;황상순;윤영빈;정인석
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.04a
    • /
    • pp.9-9
    • /
    • 1999
  • 각국의 공해 물질 배출량 규제가 엄격해지면서 저공해 가스터빈 엔진 개발의 필요성이 점점 대두되고 있다. 공해 물질 중 NOx는 고온에서 생성량이 급격히 증가하므로 배출량을 줄이기 위해서는 엔진 작동 온도를 낮추어야만 하고 이는 엔진 효율의 감소로 이어진다. 따라서 NOx를 줄이기 위해서는 작동 온도는 낮추지 않으면서 국부적인 고온 지역을 줄이고 연료가 고온 지역에 머무르는 시간을 감소하는 것이 가장 효과적이다. 이러한 방법으로 스월러를 장착하여 유입되는 공기에 스월을 주는 방법이 많이 연구되어 왔다.

  • PDF

Study on Operating Characteristics for NOx Reduction in Ultra Low NOx Burner Combustion Using 80 kW Furnace (80 kW 초 저 NOx 단일 버너 연소로에서 NOx 감소를 위한 운전특성 연구)

  • Chae, Taeyoung
    • Clean Technology
    • /
    • v.26 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • This experimental study investigates the design parameters to achieve ultra low NOx combustion of coal using a 80 kW capacity single-burner furnace. The influence of key design parameters such as SN, overall and burner-zone equivalence ratios, primary/secondary air ratio, overfire air (OFA) ratio were tested for a total of 81 cases. The results showed that weak swirl intensity of the burner leads to higher NOx emission whereas strong swirl intensity accompanies increased CO concentration desipte lower NOx emission. Therefore, finding an appropirate swirl intensity is essential for the burner design. Larger flow rate of secondary air increased NOx emission, whereas smaller flow rate stretches the flame and increased CO emission. The lowest NOx emission of 82 ppm (6% O2) was achieved at the optimal condition of the present burner deisgn. It is expected to furrther lower the NOx emission by introducing splitting the burner secondary air into three or four streams.

Prediction of NOx emission for marine diesel engines of existing ship (선박용 디젤엔진의 NOx배출량 예측방법에 관한 연구)

  • Kim, Seong-Woon;Jung, Kyun-Sik;Kim, Houng-Soo;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.674-680
    • /
    • 2014
  • Monitoring systems of informations for ship performance have become important gradually for economical management of existing ship. Monitoring of NOx emission from marine diesel engines is one of them. The measurement of NOx emission, however has been many difficulties due to technical and costly problems. A monitoring by prediction method of NOx on-board ship according to sailing condition of ship could be an useful method. In this paper, it is discussed about modified method of one-zone model which has been utilized usually for analyzing the combustion process. The modified method is able to calculate the temperature of burned region from the result by one-zone model. Influences which excess air ratio during combustion process affected for the gas temperature and NOx emission were investigated. From the results variation of excess air ratio during combustion process could be estimated inversely through the comparison with measurement of NOx emission.

Effect of the De-NOx Facility Operating Condition on NOx Emission in a 125 MW Wood Pellet Power Plant (125 MW급 우드펠릿 발전소에서 탈질설비 운전조건이 질소산화물 발생량에 미치는 영향)

  • Jeon, Moonsoo;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2022
  • This study tested the effect of de-NOx Facility operating condition on Nox emisiion in a 125 MW wood pellet power plant in Yeongdong Eco Power Plant Unit 1, which is in operation. As SNCR urea flow rate increased, NOx emission gradually decreased, but ammonia slip after SCR increased. The boiler under test has a structure that is unfavorable to SNCR operation due to the high internal temperature, and the optimum location of the nozzle will be required. SCR dilution air temperature change did not affect the amount of NOx generated. Increasing SCR ammonia flow reduced the NOx emission at SCR outlet and also increased the NOx removal efficiency. However, the ammonia flow rate of 111 kg/h, which does not exceed the ammonia slip its own reference limit, is estimated to be the maximum operating standard. The increase in SCR mixer pressure reduced NOx emission and the removal efficiency was also measured to be the most effective variable to inhibit NOx production.

  • PDF

A Study of Emulsion Fuel of Cellulosic Biomass Oil (목본계 바이오매스오일의 에멀젼 연료화 연구)

  • Kim, Moon-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.836-847
    • /
    • 2016
  • Water soluble oil was obtained by pyrolysis of biomass. The characteristics of emulsified fuel by mixing water soluble oil and MDO(marine diesel oil) and engine emissions were studied with engine dynamometer. Saw dust was used as biomass. Water soluble oil was obtained by condensing of water and carbon content with pyrolysis of saw dust at $500^{\circ}C$. Emulsion fuel was obtained by emulsifying MDO and water soluble oil by the water soluble oil mixing ratio of 10 to 20% of MDO. Exhaust gas detection was performed with engine dynamometer. While combustion, micro-explosion took place in the combustion chamber by water in the emulsion fuel, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water soluble oil content in the emulsion fuel. The power also decreased according to the increment of water soluble oil content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 20% bio oil content, it was achieved 25% reduction in NOx production, 60% reduction in smoke density, and 15% reduction in power loss.

NOx Formation Characteristics of Fuel Staged Gas Turbine Combustor (단계적 연료공급 가스터빈 연소기의 NOx 발생특성)

  • Lee, Chan;Lee, Han-Goo;Kang, Seung-Jong
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.15-21
    • /
    • 1994
  • 단계적 연료방식을 가지는 가스터빈 연소기의 해석을 위한 방법을 제안하였으며, 이를 바탕으로 연료배분방식에 따른 연소기의 연소 및 NOx 발생특성을 규명하였다. 연소기 해석모델은 연소기 내부를 선회기구역, 1차연소구역, 재순환구역, 2차연소구역 및 희석구역으로 나누어 각각의 반응구역을 혼합반응기, 플러그 유동반응기의 모델로서 근사하였다. 반응기내의 연소 및 NOx 생성반응은 천연가스 반응모델과 Zel'dovich 의 NOx 모델을 이용하여 예측하였다. 본 해석방법을 이용하여, 각 반응구역에 유입되는 연료량이 연소기내 연소특성, NOx 발생 특성 및 온도분포에 미치는 영향을 검토하였다. 또한, NOx 저감을 위해 증기분사를 사용하는 경우에 분사위치가 NOx 발생에 미치는 영향을 분석하여, 가스터빈 연소기설계에 필요한 기초자료를 제공하였다.

  • PDF

Prediction of Ozone Concentration in Suwon by Empirical Kinetic Modeling Approach (EKMA를 이용한 수원시의 장래 오존농도 예측)

  • 서정배;장영기
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.368-370
    • /
    • 1999
  • 고농도의 오존 농도를 예측ㆍ평가하기 위해서는 대상지역의 기상조건과 풍상쪽(up wind)으로부터의 오존ㆍ오존전구물질(precursor)의 중ㆍ장거리이동, VOCs 및 NOx의 배경농도 및 배출량과 관련된 VOC/NOx의 농도 특성을 파악하는 것이 필수적이다. 따라서 대상지역의 VOCs/NOx의 농도 특성에 따라 차후 고농도의 오존 생성을 예방하기 위한 오존전구물질의 저감대책이 결정되어지므로 대상지역의 광화학특성을 파악하는 것이 선행되어져야 한다.(중략)

  • PDF

Emission Characteristics of a Gas Fueled Sl Engine under Lean Burn Conditions (가스연료엔진의 희박영역에서의 배출가스특성에 관한 연구)

  • 김창업;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.93-100
    • /
    • 2002
  • For natural gas and LPG fuel, measurements on the concentrations of individual exhaust hydrocarbon species have been made as a function of air-fuel ratio in a 2-liter four-cylinder engine using a gas chromatography. NMHC in addition to the species of HC, other emissions such as CO$_2$, CO and NOx were examined for natural gas and LPG at 1800rpm far two compression ratios (8.6 and 10.6). Fuel conversion efficiencies were also investigated together with emissions to study the effect of engine parameters on the combustion performances in gas engines especially under the lean bum conditions. It was found that CO$_2$ emission decreased with smaller C value of fuel, leaner mixture strength and the higher compression ratio. HC emissions from LPG engine consisted primarily of propane (larger 60%), ethylene and propylene, while main emissions from natural gas were mothane (larger than 60%), ethane, ethylene and propane on the average. The natural gas was proved to give the less ozone formation than LPG fuel. This was accomplished by reducing the emissions of propylene, which has relatively high MIR factor, and propane that originally has large portion of LPG. In addition, natural gas shows a benefit in other emissions (i.e. NMHC,NOx, CO$_2$and CO), SR and BSR values except fuel conversion efficiency.

The Exhaust Gas Reduction of Diesel Engine by MDO (Marine Diesel Oil) Emulsion Fuel (MDO (Marine Diesel Oil) 에멀젼 연료에 의한 디젤엔진의 배출가스 저감)

  • Kim, Moon-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.7
    • /
    • pp.476-482
    • /
    • 2014
  • In this study, the characteristics of emulsified fuel and engine emissions were studied with engine dynamometer. Microexplosion took place in the combustion chamber. While combustion, emulsion fuel scattered to micro particles and it caused to smoke reduction. The heat produced from water vapour reduce the temperature of internal combustion chamber and it caused to inhibition of NOx production. It can be verified by the lower exhaust temperature of each ND-13 mode using emulsion fuel than that of MDO fuel. The NOx and smoke concentration were reduced by increasing water content in emulsion fuel. The power also decreased according to the increment of water content of emulsion fuel because emulsion fuel has low calorific value due to high water content than MDO. As a result of ND-13 mode test with 17% moisture content, it was achieved 24% reduction in NOx production, 76% reduction in smoke density, 11% reduction of $SO_2$ and 13% reduction in power loss.