• Title/Summary/Keyword: NOx저감

Search Result 420, Processing Time 0.03 seconds

NOx Reduction Study in Oscillating Combustion Burner (진동연소기의 NOx 저감 효과 연구)

  • Kang, Sang-Koo;Azimov, U.B.;Kim, Ki-Seong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.22-30
    • /
    • 2007
  • The NOx emission characteristics were studied in an oscillating combustion burner equipped with a specially designed proportioning valve. The effects of various parameters on the NOx emission which are important in oscillating combustion were investigated. Also, the effects of coincident application of flue gas recirculation(FGR) were evaluated. The results show that oscillating combustion is an efficient tool for reducing NOx in the burner. Up to 53% of NOx reduction could be acquired in low frequency and small duty ratio conditions. The coincident application of FGR further reduced the NOx emission up to 74%. Thus, this study assured that oscillating combustion technology with FGR could be a fascinating method for NOx reduction in industrial burners.

  • PDF

A Study on the Characteristics of NOx and another Emisson by Water Injection System for a Light-Duty Diesel Engine (물 분사 시스템에 의한 소형 디젤엔진의 NOx 및 그 외 배출물의 특성에 관한 연구)

  • Choi Jae-Sung;Nam Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.628-636
    • /
    • 2005
  • In this paper. the effects of a WI(Water Injection) in the intake pipe for a 4-cylinder Dl(Direct Injection) diesel engine are investigated experimentally, The WI system was controlled by the duty cycle from the intake manifold's temperature and MAF(Manifold Air Flow) First. effect of EGR on NOx reduction was investigated. Then WI system was applied to reduce NOx As the results. we can make the NOx map and visualize the NOx results by variation of engine speed and engine load It was known that effect of WI system on NOx reduction without the EGR was better than the with EGR base engine except of low load and speed condition.

A Study on the Urea-SCR System for NOx Reduction of a light-Duty Diesel Engine (소형 디젤엔진의 NOx 저감을 위한 Urea-SCR 시스템에 관한 연구)

  • Nam Jeong-Gil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.57-63
    • /
    • 2005
  • The effects of an urea injection at the exhaust pipe for a 4-cylinder DI(Direct Injection) diesel engine were investigated with the parameters such as urea-SCR(Selective Catalytic Reduction) and EGR system. The urea quantity was controlled by NOx quantity and MAF(Manifold Air Flow). The urea injection quantity can be controlled with the urea syringe pump, precisely. The effects of NOx reduction for the urea-SCR system were investigated with and without ECR engine, respectively. It was concluded that the SUF(Stoichiometric Urea Flow) is calculated and the NOx results are visualized with engine speed and load. Furthermore, the NOx map is made from this experimental results. It was suggested, therefore, that NOx reduction effects of the urea-SCR system without the EGR engine were better than that with the EGR engine except of low load and low speed.

Low Temperature Selective Catalytic Reduction of NO with $NH_3$ over Mn/$CeO_2$ and Mn/$ZrO_2$ (Mn/$CeO_2$와 Mn/$ZrO_2$ 촉매 상에서 $NH_3$를 사용한 NO의 선택적 촉매 산화 반응)

  • Ko, Jeong Huy;Park, Sung Hoon;Jeon, Jong-Ki;Sohn, Jung Min;Lee, See-Hoon;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.105-111
    • /
    • 2012
  • Manganese (Mn) catalysts were generated using $CeO_2$ and $ZrO_2$supports synthesized by the supercritical hydrothermal method and two different Mn precursors, aimed at an application for a low-temperature selective catalytic reduction process. Manganese acetate (MA) and manganese nitrate (MA) were used as Mn precursors. Effects of the kind and the concentration of the Mn precursor used for catalyst generation on the NOx removal efficiency were investigated. The characteristics of the generated catalysts were analyzed using $N_2$ adsorption-desorption, thermo-gravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. De-NOx experiments were carried out to measure NOx removal efficiencies of the catalysts. NOx removal efficiencies of the catalysts generated using MA were superior to those of the catalysts generated using MN at every temperature tested. Analyses of the catalyst characteristics indicated that the higher NOx removal efficiencies of the MA-derived catalysts stemmed from the higher oxygen mobility and the stronger interaction with support material of $Mn_2O_3$ produced from MA than those of $MnO_2$ produced from MN.

Numerical Study of SNCR System for the NOx removal in a Municipal Soild Waste Incineratior (NOx 저감을 위한 SNCR 시스템의 전산해석연구)

  • 나혜령;박병수;주지선;서정대;김현진
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.229-232
    • /
    • 2000
  • 산업 현장에서 연소 과정중 발생되는 NOx를 제거하기 위한 방법으로 현재 연구 및 상업 화 대상에서 가장 널리 사용되고 있는 것이 SCR(Selective Catalytic Reduction)과 SNCR((Selective non-catalytic reduction)이다. 그러나, SCR의 경우 높은 장치비와 유지비 가 소요되어, 최근에는 로 내에 요소용액을 직접 분사하여 NOx를 질소와 수증기로 환원시켜 제거하는 방법인 SNCR에 대한 연구가 활발히 진행되고 있는 추세이다.(중략)

  • PDF

A Study on Coating Characteristics of Cleaning Filter for DeNOx Catalyst (NOx 저감촉매의 집진필터 고착 특성에 대한연구)

  • 최현덕;김상도;정순관;박영옥;서용칠
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.261-262
    • /
    • 2002
  • 산업용 보일러나 발전설비와 같은 대규모 고정원에서 다량 배출되는 NOx의 제거를 위한 여러 기술 중에서 현재 암모니아를 환원제로 사용하는 선택적 촉매 환원법(Selective Catalytic Reduction : SCR)이 가장 유망하며, 많은 연구와 더불어 선진국가에서 상업화되어 조업되고 있다. SCR 공정은 시설투자와 운전비가 비교적 저렴하고 높은 NOx 전환율(90%이상)과 폐수처리 등의 후처리 공정이 필요하지 않은 장점이 있다. (중략)

  • PDF

The Development and Implementation of Model-based Control Algorithm of Urea-SCR Dosing System for Improving De-NOx Performance and Reducing NH3-slip (Urea-SCR 분사시스템의 DeNOx 저감 성능 향상과 NH3 슬립저감을 위한 모델 기반 제어알고리즘 개발 및 구현)

  • Jeong, Soo-Jin;Kim, Woo-Seung;Park, Jung-Kwon;Lee, Ho-Kil;Oh, Se-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2012
  • The selective catalytic reduction (SCR) system is a highly-effective aftertreatment device for NOx reduction of diesel engines. Generally, the ammonia ($NH_3$) was generated from reaction mechanism of SCR in the SCR system using the liquid urea as the reluctant. Therefore, the precise urea dosing control is a very important key for NOx and $NH_3$ slip reduction in the SCR system. This paper investigated NOx and $NH_3$ emission characteristics of urea-SCR dosing system based on model-based control algorithm in order to reduce NOx. In the map-based control algorithm, target amount of urea solution was determined by mass flow rate of exhaust gas obtained from engine rpm, torque and $O_2$ for feed-back control NOx concentration should be measured by NOx sensor. Moreover, this algorithm can not estimate $NH_3$ absorbed on the catalyst. Hence, the urea injection can be too rich or too lean. In this study, the model-based control algorithm was developed and evaluated on the numerical model describing physical and chemical phenomena in SCR system. One channel thermo-fluid model coupled with finely tuned chemical reaction model was applied to this control algorithm. The vehicle test was carried out by using map-based and model-based control algorithms in the NEDC mode in order to evaluate the performance of the model based control algorithm.

A Study of NOx Removal in Flue Gas by Selective Catalytic Reduction (선택적 촉매환원법에 의한 배기가스중 NOx 저감에 관한 연구)

  • 박해경;김경림;최병선;이인철;최익수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.38-46
    • /
    • 1988
  • NOx is an important air pollution material which is generated when fossil fuels are burning, NOx removal in flue gas by selective catalytic reduction was studied over various catalysts in a fixed bed continuous flow reactor. The ranges of experimental conditions were at the temperatures between $200^\circ$C and $350^\circ$C, the $NH_3/NOx$ mole ratios between 0.8 and 1.4, oxygen concentrations between 1.5% and 3% and the space velocities between 5, 000 $hr^-1$ and 12, 500 $hr^-1$. The efficiency of NOx removal in the ranges of experimental conditions was highest at the temp. of 300$^\circ$C, oxygen concentration of 2.5-2.6% and $NH_3/NOx$ mole ratios of 1.0-1.2. The catalyst with high activity for NOx removal in flue gas was found to be $MoO_3-V_2O_5/TiO_2$.

  • PDF

NOx Reduction in the $10MW_{e}$ Power Boiler by Combustion Improvement (연소개선에 의한 $10MW_{e}$급 발전용 보일러의 NOx 저감)

  • Kim, Tai-Hyeung;Kim, Sung-Chul;Ahn, Kook-Young;Hong, Sung-Sun
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.26-34
    • /
    • 2000
  • Geometry change of burner nozzle has influence on fuel atomizing and combustion characteristics. NOx reduction technologies can be divided into two method; Before combustion method(NOx treatment of fuel) and After combustion method(NOx treatment of flue gas). In this study, experiments are carried out using difference nozzle and combustion condition change to reduce NOx in heavy oil fired thermal utility boiler. These methods have advantage like easy application and low installation cost. By this method NOx can be reduced by 18% and maintain CO emission level.

  • PDF

Reduction of Nitrogen Oxide by Fuel Staged Technology on the Combustion of Gasification Fuel (가스화 연료 연소시 단계적 연료주입 기술에 의한 질소산화물 저감)

  • Chae, Jong-Seong;Jo, Seon-Hui;Jeon, Yeong-Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.107-116
    • /
    • 1998
  • Coal gasification fuel has generally a lower calorific values than natural gas and also contains ammonia which is a main source of fuel NOx. Such a fuel is in need of the advanced technologies for the NOx reduction with higher combustion efficiency. Therefore fuel staged combustion was investigated for the fuel NOx control using a bench scale gas combustoi for the fuel NOx control. Parametric screening studies were performed with the variation of air ratio, retention length and reburning fuel. The NOx reduction efficiency was increased with an increase of total air ratio having optimum reburning air ratio differently, The Increased retention length of the reburning zone was preferable for NOx reduction. Hydrocarbonic reburning fuels like propane and butane were more effective for the NOx reduction efficiency than hydrogen fuel. The NOx concentration at exit was linearly increased according to the fuel-N the fuel.

  • PDF