• 제목/요약/키워드: NOTCH signaling pathway

검색결과 36건 처리시간 0.022초

Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity

  • Kim, Somi;Kim, TaeHyun;Lee, Hye-Ryeon;Kong, Young-Yun;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.515-522
    • /
    • 2015
  • Notch signaling is a key regulator of neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-2 (Mib2) is an essential positive regulator of the Notch pathway, which acts in the Notch signal-sending cells. Therefore, genetic deletion of Mib2 in the mouse brain might help understand Notch signaling-mediated cell-cell interactions between neurons and their physiological function. Here we show that deletion of Mib2 in the mouse brain results in impaired hippocampal spatial memory and contextual fear memory. Accordingly, we found impaired hippocampal synaptic plasticity in Mib2 knock-out (KO) mice; however, basal synaptic transmission did not change at the Schaffer collateral-CA1 synapses. Using western blot analysis, we found that the level of cleaved Notch1 was lower in Mib2 KO mice than in wild type (WT) littermates after mild foot shock. Taken together, these data suggest that Mib2 plays a critical role in synaptic plasticity and spatial memory through the Notch signaling pathway.

Phosphorylation-dependent regulation of Notch1 signaling: the fulcrum of Notch1 signaling

  • Lee, Hye-Jin;Kim, Mi-Yeon;Park, Hee-Sae
    • BMB Reports
    • /
    • 제48권8호
    • /
    • pp.431-437
    • /
    • 2015
  • Notch signaling plays a pivotal role in cell fate determination, cellular development, cellular self-renewal, tumor progression, and has been linked to developmental disorders and carcinogenesis. Notch1 is activated through interactions with the ligands of neighboring cells, and acts as a transcriptional activator in the nucleus. The Notch1 intracellular domain (Notch1-IC) regulates the expression of target genes related to tumor development and progression. The Notch1 protein undergoes modification after translation by posttranslational modification enzymes. Phosphorylation modification is critical for enzymatic activation, complex formation, degradation, and subcellular localization. According to the nuclear cycle, Notch1-IC is degraded by E3 ligase, FBW7 in the nucleus via phosphorylation-dependent degradation. Here, we summarize the Notch signaling pathway, and resolve to understand the role of phosphorylation in the regulation of Notch signaling as well as to understand its relation to cancer. [BMB Reports 2015; 48(8): 431-437]

Nerve Growth Factor Stimulates Glioblastoma Proliferation through Notch1 Receptor Signaling

  • Park, Jun Chul;Chang, In Bok;Ahn, Jun Hyong;Kim, Ji Hee;Song, Joon Ho;Moon, Seung Myung;Park, Young-Han
    • Journal of Korean Neurosurgical Society
    • /
    • 제61권4호
    • /
    • pp.441-449
    • /
    • 2018
  • Objective : Notch receptors are heterodimeric transmembrane proteins that regulate cell fate, such as differentiation, proliferation, and apoptosis. Dysregulated Notch pathway signaling has been observed in glioblastomas, as well as in other human malignancies. Nerve growth factor (NGF) is essential for cell growth and differentiation in the nervous system. Recent reports suggest that NGF stimulates glioblastoma proliferation. However, the relationship between NGF and Notch1 in glioblastomas remains unknown. Therefore, we investigated expression of Notch1 in a glioblastoma cell line (U87-MG), and examined the relationship between NGF and Notch1 signaling. Methods : We evaluated expression of Notch1 in human glioblastomas and normal brain tissues by immunohistochemical staining. The effect of NGF on glioblastoma cell line (U87-MG) was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. To evaluate the relationship between NGF and Notch1 signaling, Notch1 and Hes1 expression were evaluated by reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. To confirm the effects of NGF on Notch1 signaling, Notch1 and Hes1 small interfering RNAs (siRNAs) were used. Results : In immunohistochemistry, Notch1 expression was higher in glioblastoma than in normal brain tissue. MTT assay showed that NGF stimulates U87-MG cells in a dose-dependent manner. RT-PCR and Western blot analysis demonstrated that Notch1 and Hes1 expression were increased by NGF in a dose-dependent manner. After transfection with Notch1 and Hes1 siRNAs, there was no significant difference between controls and 100 nM $NGF-{\beta}$, which means that U87-MG cell proliferation was suppressed by Notch1 and Hes1 siRNAs. Conclusion : These results indicate that NGF stimulates glioblastoma cell proliferation via Notch1 signaling through Hes 1.

The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1

  • Feng, Yimiao;Wan, Pengbo;Yin, Linling;Lou, Xintian
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권3호
    • /
    • pp.448-458
    • /
    • 2020
  • We investigated the therapeutic effects of microRNA-139-5p in relation to osteoporosis of bone marrow-derived mesenchymal stem cell (BMSCs) and its underlying mechanisms. In this study we used a dexamethasone-induced in vivo model of osteoporosis and BMSCs were used for the in vitro model. Real-time quantitative polymerase chain reaction (RT-PCR) and gene chip were used to analyze the expression of microRNA-139-5p. In an osteoporosis rat model, the expression of microRNA-139-5p was increased, compared with normal group. Down-regulation of microRNA-139-5p promotes cell proliferation and osteogenic differentiation in BMSCs. Especially, up-regulation of microRNA-139-5p reduced cell proliferation and osteogenic differentiation in BMSCs. Overexpression of miR-139-5p induced Wnt/β-catenin and down-regulated NOTCH1 signaling in BMSCs. Down-regulation of miR-139-5p suppressed Wnt/β-catenin and induced NOTCH1 signaling in BMSCs. The inhibition of NOTCH1 reduced the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Activation of Wnt/β-catenin also inhibited the effects of anti-miR-139-5p on cell proliferation and osteogenic differentiation in BMSCs. Taken together, our results suggested that the inhibition of microRNA-139-5p promotes osteogenic differentiation of BMSCs via targeting Wnt/β-catenin signaling pathway by NOTCH1.

The Role of a Neurovascular Signaling Pathway Involving Hypoxia-Inducible Factor and Notch in the Function of the Central Nervous System

  • Kim, Seunghee;Lee, Minjae;Choi, Yoon Kyung
    • Biomolecules & Therapeutics
    • /
    • 제28권1호
    • /
    • pp.45-57
    • /
    • 2020
  • In the neurovascular unit, the neuronal and vascular systems communicate with each other. O2 and nutrients, reaching endothelial cells (ECs) through the blood stream, spread into neighboring cells, such as neural stem cells, and neurons. The proper function of neural circuits in adults requires sufficient O2 and glucose for their metabolic demands through angiogenesis. In a central nervous system (CNS) injury, such as glioma, Parkinson's disease, and Alzheimer's disease, damaged ECs can contribute to tissue hypoxia and to the consequent disruption of neuronal functions and accelerated neurodegeneration. This review discusses the current evidence regarding the contribution of oxygen deprivation to CNS injury, with an emphasis on hypoxia-inducible factor (HIF)-mediated pathways and Notch signaling. Additionally, it focuses on adult neurological functions and angiogenesis, as well as pathological conditions in the CNS. Furthermore, the functional interplay between HIFs and Notch is demonstrated in pathophysiological conditions.

Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation

  • Kim, Wantae;Khan, Sanjoy Kumar;Yang, Yingzi
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.1-2
    • /
    • 2017
  • Acquiring a selective growth advantage by breaking the proliferation barrier established by gatekeeper genes is a centrally important event in tumor formation. Removal of the mammalian Hippo kinase Mst1 and Mst2 in hepatocytes leads to rapid hepatocellular carcinoma (HCC) formation, indicating that the Hippo signaling pathway is a critical gatekeeper that restrains abnormal growth in hepatocytes. By rigorous genetic approaches, we identified an interacting network of the Hippo, Wnt/${\beta}$-catenin and Notch signaling pathways that control organ size and HCC development. We found that in hepatocytes, the loss of Mst1/2 leads to the activation of Notch signaling, which forms a positive feedback loop with Yap/Taz (transcription factors controlled by Mst1/2). This positive feedback loop results in severe liver enlargement and rapid HCC formation. Blocking the Yap/Taz-Notch positive feedback loop by Notch inhibition in vivo significantly reduced the Yap/Taz activities, hepatocyte proliferation and tumor formation. Furthermore, we uncovered a surprising inhibitory role of Wnt/${\beta}$-catenin signaling to Yap/Taz activities, which are important in tumor initiation. Genetic removal of ${\beta}$-catenin in the liver of the Mst1/2 mutants significantly accelerates tumoriogenesis. Therefore, Wnt/${\beta}$-catenin signaling, known for its oncogenic property, exerts an unexpected function in restricting Yap/Taz and Notch activities in HCC initiation. The molecular interplay between the three signaling pathways identified in our study provides new insights in developing novel therapeutic strategies to treat liver tumors.

제브라피쉬를 이용한 새로운 유전자의 발굴 및 기능분석 (Zebrafish as a Tool for Function Genomics)

  • 김현택;김철희
    • 한국발생생물학회지:발생과생식
    • /
    • 제7권2호
    • /
    • pp.69-80
    • /
    • 2003
  • 대량의 발생 유전학적 연구가 가능한 척추동물로서 최근 제브라피쉬가 새로운 동물모델로 급부상하고 있다 다양한 형태의 돌연변이들로부터 새로운 유전자들이 발굴되어지고 있으며, 인간 유전체의 기능 분석 수단으로 활용되어지고 있다. 신경계의 형성과 분화에 이상이 있는 hendless와 mind bomb이라는 두 가지 돌연변이주에서 positional cloning에 의한 원인 유전자의 발굴과 기능 분석의 예로써 현재 제브라피쉬의 연구 현황을 살펴보고자 한다. headless의 원인 유전자로 Tcf-3가 밝혀졌으며, 초기 발생단계에서 Wnt 신호전달이 두뇌의 형태형성과 영역 결정에서 핵심적 역할을 하고 있다는 사실이 밝혀졌다. mind bomb에서의 비정상적인 신경세포의 운명 결정은 lateral inhibition과 Notch 신호전달의 결함에 의한 것이고, 그 원인 유전자는 Notch ligand인 Delta에 결합하는 새로운 ubiquitin E3 ligase로 밝혀졌다. 이러한 돌연변이를 통한 연구는 현재 인간 질환모델의 개발이라는 방향으로 확대되고 있다.

  • PDF

T Cells Development Is Different between Thymus from Normal and Intrauterine Growth Restricted Pig Fetus at Different Gestational Stage

  • Lin, Yan;Wang, Junjun;Wang, Xiaoqiu;Wu, Weizong;Lai, Changhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.343-348
    • /
    • 2013
  • This experiment was conducted to evaluate the development of T cells in intrauterine growth retarded (IUGR) piglets at different gestational stages, and tentatively explore the relationship between T cells development and the Notch signaling pathway. A total of 18 crossbred (Landrace${\times}$Large white) primiparous sows were mated at similar weights and estruses and euthanized at d 60, 90 and 110 of gestation with six replicates for each time point. One IUGR and one normal fetus were picked from each litter. The T-cell subsets, mRNA expression of Delta-like1, Delta-like4, Jagged1, and Notch2 genes in the thymus were investigated. Compared to normal piglets, $CD3^+CD4^-CD8^+$ cells in IUGR fetuses at d 90 was 0.13% lower (p<0.05). At d 110 of gestation $CD8^+$ T cells in IUGR fetuses was 0.19% lower (p<0.05). The percentage of $CD8^+$ T cells was 3.14% lower (p<0.05) of the total T cells in IUGR pigs at d 60. The abundance of Notch2 and Delta-like4 mRNA at d 110 was 20.93% higher and 0.77% (p<0.05) lower, and Delta-like1 mRNA at d 90 was 0.19% (p<0.05) higher compared to normal pigs. These results suggested that normal fetuses had a greater proportion of T-cell subsets at earlier gestation periods, and the Notch signaling pathway was likely partially responsible for these differences to some degree.

siRNA-mediated Silencing of Notch-1 Enhances Docetaxel Induced Mitotic Arrest and Apoptosis in PCa Cells

  • Ye, Qi-Fa;Zhang, Yi-Chuan;Peng, Xiao-Qing;Long, Zhi;Ming, Ying-Zi;He, Le-Ye
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2485-2489
    • /
    • 2012
  • Purpose: Notch is an important signaling pathway that regulates cell fate, stem cell maintenance and the initiation of differentiation in many tissues. It has been reported that activation of Notch-1 contributes to tumorigenesis. However, whether Notch signaling might have a role in chemoresistance of prostate cancer is unclear. This study aimed to investigate the effects of Notch-1 silencing on the sensitivity of prostate cancer cells to docetaxel treatment. Methods: siRNA against Notch-1 was transfected into PC-3 prostate cancer cells. Proliferation, apoptosis and cell cycle distribution were examined in the presence or absence of docetaxel by MTT and flow cytometry. Expression of $p21^{waf1/cip1}$ and Akt as well as activation of Akt in PC-3 cells were detected by Western blot and Real-time PCR. Results: Silencing of Notch-1 promoted docetaxel induced cell growth inhibition, apoptosis and cell cycle arrest in PC-3 cells. In addition, these effects were associated with increased $p21^{waf1/cip1}$ expression and decreased Akt expression and activation in PC-3 cells. Conclusion: Notch-1 promotes chemoresistance of prostate cancer and could be a potential therapeutic target.

Notch Inhibitor: a Promising Carcinoma Radiosensitizer

  • Yu, Shu-Dong;Liu, Fen-Ye;Wang, Qi-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5345-5351
    • /
    • 2012
  • Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.