• Title/Summary/Keyword: NON-INVASIVE MEASUREMENT

Search Result 184, Processing Time 0.023 seconds

Non-Invasive in vivo Loss Tangent Imaging: Thermal Sensitivity Estimation at the Larmor Frequency

  • Choi, Narae;Kim, Min-Oh;Shin, Jaewook;Lee, Joonsung;Kim, Dong-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.36-43
    • /
    • 2016
  • Visualization of the tissue loss tangent property can provide distinct contrast and offer new information related to tissue electrical properties. A method for non-invasive imaging of the electrical loss tangent of tissue using magnetic resonance imaging (MRI) was demonstrated, and the effect of loss tangent was observed through simulations assuming a hyperthermia procedure. For measurement of tissue loss tangent, radiofrequency field maps ($B_1{^+}$ complex map) were acquired using a double-angle actual flip angle imaging MRI sequence. The conductivity and permittivity were estimated from the complex valued $B_1{^+}$ map using Helmholtz equations. Phantom and ex-vivo experiments were then performed. Electromagnetic simulations of hyperthermia were carried out for observation of temperature elevation with respect to loss tangent. Non-invasive imaging of tissue loss tangent via complex valued $B_1{^+}$ mapping using MRI was successfully conducted. Simulation results indicated that loss tangent is a dominant factor in temperature elevation in the high frequency range during hyperthermia. Knowledge of the tissue loss tangent value can be a useful marker for thermotherapy applications.

Monitoring Ion Energy Distribution in Capacitively Coupled Plasmas Using Non-invasive Radio-Frequency Voltage Measurements

  • Choi, Myung-Sun;Lee, Seok-Hwan;Jang, Yunchang;Ryu, Sangwon;Kim, Gon-Ho
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.357-365
    • /
    • 2014
  • A non-invasive method for ion energy distribution measurement at a RF biased surface is proposed for monitoring the property of ion bombardments in capacitively coupled plasma sources. To obtain the ion energy distribution, the measured electrode voltage is analyzed based on the circuit model which is developed with the linearized sheath capacitance on the assumption that the RF driven sheath behaves like a simple diode for a bias power whose frequency is much lower than the ion plasma frequency. The method is verified by comparing the ion energy distribution function obtained from the proposed model with the experimental result taken from the ion energy analyzer in a dual cathode capacitively coupled plasma source driven by a 100 MHz source power and a 400 kHz bias power.

Cerebral blood flow enhancement device using Blood Oxygen Level Sensor (Blood Oxygen Level Sensor를 이용한 대뇌혈류증가 장치)

  • Lim, Jung-hyun;Joh, In-Hee;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1083-1089
    • /
    • 2018
  • Surgery to increase cerebral blood flow is one of the treatment methods of cerebral infarction. In order to supplement this invasive method, non-invasive devices have been introduced that use human blood pressure to pressurize the extremities to increase cerebral blood flow. However, the problem of poor speed and accuracy was raised. In this paper, the perfusion index of each arm is measured by applying pressure to both arms using Blood Oxygen Level Sensor to improve the accuracy of measurement and measurement time. The pressure applied to the arm is calculated by using the pressure value obtained from the arm. Like the existing blood pressure measuring cerebral blood flow increasing device, the blood flow can be increased by more than 20% and the measurement time can be shortened, so that it can be selectively used for the patient with cerebral infarction.

Implementation of Noninvasive Blood Pressure Measuring System for Home Health Care Using Oscillometric Method (오실로메트릭법을 적용한 홈헬스케어용 비침습적 혈압측정법의 구현)

  • Kang Seong-Chul;Jeon Gye-Rock;Jeong Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.689-692
    • /
    • 2006
  • In this study, an implementation of a system for measuring more accurate blood pressure by non-invasive methods of oscillometric was performed to reduce errors and weaknesses of the existing invasive blood pressure measurement methods. The system is composed of pressure control, signal measurement and blood pressure signal processing units. To verify the validity of the system, tests of characteristics evaluations for pressure measurement unit, extraction of characteristic ratios for blood pressure estimation, blood pressure tracking by oscillometric method were performed. A group of five adult male was selected for the clinical test of the implemented system. The results of the oscillometric method in comparison with auscultatory method are that the maximum ratios of PAD of average, systolic and diastolic arterial pressure are 1.38%, 1.63% and 2.97% with SEP of 5.00, 3.72 and 4.34.

  • PDF

Non-invasive hematocrit measurement (혈액중 non-invasive hematocrit 분석)

  • Yoon, Gil-Won;Jeon, Kye-Jin;Park, Kun-Kook;Lee, Jong-Youn;Hwang, Hyun-Tae;Yeo, Hyung-Seok;Kim, Hong-Sig
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2002.11a
    • /
    • pp.59-62
    • /
    • 2002
  • Wavelength selection and prediction algorithm for determining hematocrit are investigated. A model based on the difference in optical density induced by the pulsation of heart beat is developed by taking approximation of Twersky's theory on the assumption that the variation of blood vessel size is small during arterial pulsing[1]. A device is constructed with a five-wavelength LED array as light source. The selected wavelengths are two isobestic points and three in compensation for tissue scattering. Data are collected from 549 out-patients who are randomly grouped as calibration and prediction sets. The range of percent hematocrit was 19.3∼51.8. The ratio of the variations of optical density between systole and diastole at two different wavelengths is used as a variable. We selected several such variables that show high reproducibility among all variables. Multiple linear regression analysis is made. The relative percent error is 8% and the standard deviation is 3.67 for the calibration set. The relative % error and standard deviation of the prediction set are 8.2% and 3.69 respectively. We successfully demonstrate the possibility of non-invasive hematocrit measurement, particularly, using the wavelengths below 1000nm.

  • PDF

Non-invasive Blood Glucose Detection Sensor System Based on Near-Infrared Spectroscopy (근적외선 분광법 기반 비침습식 혈당 검출 센서 시스템)

  • Kang, Young-Man;Han, Soon-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.991-1000
    • /
    • 2021
  • Among non-invasive blood glucose detection technologies, the optical technique is a method that uses light reflection, absorption, and scattering characteristics when passing through a biological medium. It reduces pain or discomfort in measurement and has no risk of infection. So it is becoming a major flow of blood glucose detection research. Among them, near-infrared spectroscopy has a disadvantage in that the complexity increases when analyzing signals detected due to interferences between proteins and acids that share a similar absorption function with blood glucose molecules. In this study, a non-invasive sensor system with multiple near-infrared bands was designed and manufactured to alleviate the deterioration of blood glucose detection function that may occur due to skin absorption of near-infrared rays. A blood survey was conducted to verify the system, and the degree of blood glucose response in the blood was collected as spectral data, and the results of this study were quantitatively verified in terms of correlation between the data and blood glucose.

A Study on the Electrical Difference for The Limbs and Thoracic Impedance using Real-Time Bio-impedance Measurement System (실시간 생체임피던스 측정 시스템을 이용한 사지와 흉부 임피던스에 대한 전기적인 차이 연구)

  • Cho, Young-Chang;Kim, Min-Soo;Yoon, Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 2013
  • Bio-impedance measurement system(BMS) is non-invasive and easy to implement a measurement method that allows determining the water content of a patient. The measurement conditions, the hardware specifications and the configurations of BMS devices must be well chosen in order to get correct and reproducible results. BMS was then conducted for the limbs and the thoracic using a lock-in amplifier and LabView control system with a frequency range of 1kHz-100kHz. From both the measurement data and the simulation results, we verified that the parameters in the proposed equivalent model and the trend of impedance variation according to the multi-frequency of applied current source are similar to those of human body. We believe that the real-time BMS developed in this study is highly reliable and applicable to the research on the clinical characteristics of the human being's impedance.

In vivo ESR measurement of free radical reaction in living mice

  • Han, Jin-Yi;Hideo Utsumi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.6-7
    • /
    • 2000
  • Recently, free radicals such as active oxygen species, nitric oxide, etc are believed to be one of the key substances in physiological and pathological, toxicological phenomena, and oxidative damages, and all organism have defencing system against such as free radicals. Formation and extinction of free radicals may be regulated through bio-redox system, in which various enzymes and compounds should be involved in very complicated manner. Thus, direct and non-invasive measurement of in vivo free radical reactions with living animals must be essential to understand the role of free radicals in pathophysiological phenomena. Electron spin resonance spectroscopy (ESR) is very selective and sensitive technique to detect free radicals, but a conventional ESR spectrometer has large detect in application to living animals, since high frequent microwave is absorbed with water, resulting in generation of high fever in living body. In order to estimate in vivo free radical reactions in living whole animals, we develop in vivo ESR-CT technique using nitroxide radicals as spin probes. Nitroxide radicals and their reduced forms, hydroxylamines, are known to interact with various redox systems. We found that! ! the signal decay due to reduction of nitroxyl radicals is influenced by aging, inspired oxygen concentration, ischemia-referfusion injury, radiation, etc. In the present paper, I will introduce in vivo ESR technique and my laboratory recent results concerning non-invasive evaluation of free radical reactions in living mice.

  • PDF

A Study on the non-invasive grape measurement by optical method (광학적 비침습에 의한 포도의 당도 측정에 관한 연구)

  • Jo, Sung-Hyun;Oh, Se-Young;Lee, Young-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.408-410
    • /
    • 2008
  • 포도의 질을 평가하는 기준 중 중요한 요소는 포도에 포함된 당도로 나타낼 수 있다. 기존 측정법은 포도를 절개하여 포도의 당도를 측정하였다. 본 연구에서는 수확시기에 들어선 포도송이의 당도 및 색깔을 측정하여 수확시기를 결정할 수 있도록 하였다. 이를 위해서 가시영역의 LED광원을 사용하여 포도송이를 측정하였다.

  • PDF

얼굴근전도와 얼굴표정으로 인한 감성의 정성적 평가에 대한 연구

  • 황민철;김지은;김철중
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.264-269
    • /
    • 1996
  • Facial expression is innate communication skill of human. Human can recognize theri psychological state by facial parameters which contain surface movement, color, humidity and etc. This study is to quantify or qualify human emotion by measurement of facial electromyography (EMG) and facial movement. The measurement is taken at the facial area of frontalis and zygomaticus The results is indicative to discriminate the positive and negative respond of emotion and to extract the parameter sensitive to positive and negative facial-expression. The facial movement according to EMG shows the possibility of non-invasive technique of human emotion.

  • PDF