• Title/Summary/Keyword: NO2 sensor

Search Result 604, Processing Time 0.03 seconds

Magnet Position Sensor System using Hall Sensors (홀센서를 이용한 자석의 위치인식 센서 개발)

  • Kim, Eun-Ju;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.2
    • /
    • pp.166-172
    • /
    • 2011
  • This paper presents a sensor system which recognizes the location of a magnet using cheap hall sensor. The proposed methods measure magnetic field from a magnet using model equation, analyze the property of horizontal and vertical magnetic field, and decide the method of sensor arrangement. And, this paper proposes the algorithm which infers the location of a magnet from the measured magnetic field that relates the position between the magnet and the hall sensor, and calculate theoretical error, which is found to be no more than 0.0025cm. The results actually measured show that the measured error no more than 0.07cm and confirm that proposed systems are highly applicable to the various situations.

Fabrication and Characteristics of Surface-Acoustic-Wave Sensors for Detecting $NO_2$ GaS ($NO_2$ 가스 감지를 위한 표면탄성파 센서의 제작 및 특성)

  • Choi, D.H.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 1999
  • Surface acoustic wave (SAW) device is very attractive for gas sensor applications because of their small size, low cost, high sensitivity, and good reliability. A dual delay line surface acoustic wave $NO_2$ gas sensors have been designed and fabricated on the $LiTaO_3$ piezoelectric single crystal substrate. The capacitance of the fabricated IDTs was 326.34pF at the frequency of 79.3MHz. The maximum reflection loss of the impedence-matched IDTs was -16.74dB at the frequency of 79.3MHz. The SAW oscillator was constructed and the stable oscillation was obtained by controlling the gain of rf amplifier properly. The oscillation frequency shift of the SAW oscillator to the $NO_2$ gas was 28Hz/ppm.

  • PDF

A Study of Power Source for Wireless Sensor Node Using Supercapacitors (슈퍼커패시터를 이용한 무선센서노드의 전원에 관한 연구)

  • Kim, Hyung-Pyo;Kim, Jin-Gyu
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.379-384
    • /
    • 2012
  • This paper presents the power source of wireless sensor node (WSN) using supercapacitors and a solar cell. Supercapacitors have high lifetime cycling compared to that of batteries. Supercapacitors are connected in series to achieve higher voltage and a voltage balancing circuit is required to ensure that no individual cell goes overvoltage. We employ an active balancing circuit that draws minimal current by using transistors. A diode is connected in series with each supercapacitor. A new balancing circuit that equalize the cells-voltage reduces energy consumption of supercapacitors. Voltage of operating WSN is applied 2.2-3.3V by DC/DC converter and supercapacitor voltage 2.2-5.1V. Maximum operating time of wireless sensor node is about 16 hours in full charging.

A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors (ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구)

  • 한세원;조한구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF

2.2 “ QVGA LTPS LCD Panel integrated with Ambient light Sensor

  • Weng, Chien-Sen;Chao, Chih-Wei;Tseng, Hung Wei;Peng, Chia-Tien;Lin, Kun-Chih;Gan, Feng-Yuan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1319-1322
    • /
    • 2007
  • Planar PIN photodiode is compatible with LTPS process, and its fabrication requires no additional manufacturing process. In this study we design the optimum dimension of PIN diodes with two nitride layers to improve the efficiency of PIN diodes. The PIN photo sensor shows very good sensitivity to ambient light illuminance.

  • PDF

Planar Hall Resistance Sensor for Monitoring Current

  • Kim, KunWoo;Torati, Sri Ramulu;Reddy, Venu;Yoon, SeokSoo
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.151-154
    • /
    • 2014
  • Recent years have seen an increasing range of planar Hall resistive (PHR) sensor applications in the field of magnetic sensing. This study describes a new application of the PHR sensor to monitor a current. Initially, thermal drift experiments of the PHR sensor are performed, to determine the accuracy of the PHR signal output. The results of the thermal drift experiments show that there is no considerable drift in the signals attained from 0.1, 0.5, 1 and 2 mA current. Consequently, the PHR sensor provides adequate accuracy of the signal output, to perform the current monitoring experiments. The performances of the PHR sensor with bilayer and trilayer structures are then tested. The minimum detectable currents of the PHR sensor using bilayer and trilayer structures are $0.51{\mu}A$ and 54 nA, respectively. Therefore, the PHR sensor having trilayer structure is the better choice to detect ultra low current of few tens nanoampere.

NO Sensing Characteristics of ZnO Nanorod Prepared by Ultrasound Radiation Method (초음파 처리에 의해 합성된 ZnO 나노로드 센서의 일산화질소 가스에 대한 감응 특성)

  • Park, Sun-Min;Zhang, Shao-Lin;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.7
    • /
    • pp.367-372
    • /
    • 2008
  • ZnO nanorod gas sensors were prepared by an ultrasound radiation method and their gas sensing properties were investigated for NO gas. For this procedure, 0.01, 0.005 and 0.001M of zinc nitrate hydrate [$Zn(NO_3)_2\;{\cdot}\;6H_2O$] and hexamethyleneteramine [$C_6H_{12}N_4$] aqueous solutions were prepared and then the solution was irradiated with high intensity ultrasound for 1 h. The lengths of ZnO nanorods ranged from 200 nm to 500 nm with diameters ranging from 40 nm to 80 nm. The size of the ZnO nanorods could be controlled by the concentration of solution. The sensing characteristics of these nanostructures were investigated for three kinds of sensor. The properties of the sensors were influenced by the morphology of the nanorods.

The Fabrication and $NO_X$-sensing characteristics of $WO_3$-based semiconductor gas sensor for detecting sub-ppm level of $NO_X$ (초미량의 이산화질소가스 감지를 위한 텅스텐산화물계 반도체 가스 센서의 제조 및 $NO_X$ 감응 특성)

  • 이대식;임준우
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.601-604
    • /
    • 1998
  • NOX detecting gas sensors using TiO2 doped tungsten oxide semiconductor were prepared and their electrical and sensing characteristics have been investigated. In normal air condition, the sensors of WO3, TiO2 doped WO3 show grain boundary heights of 0.34 eV, 0.25 eV, respectively. The grain boundary barrier energy variation was increased by doping TiO2 into large variation of resistance to NOX gases. And doping the TiO2 4 wt.%, the particle size of WO3 polycrystal films showed higher sensitivity and better sorption characteristics to NOX gas than the pure WO3 films material in air at operating temperature of $350^{\circ}C.$ The TiO2 doped WO3 semiconductor gas sensor shows nano-sized particle size and good sensitivity to sub-ppm concentration of NOX.

  • PDF

Semiconductor-Type MEMS Gas Sensor for Real-Time Environmental Monitoring Applications

  • Moon, Seung Eon;Choi, Nak-Jin;Lee, Hyung-Kun;Lee, Jaewoo;Yang, Woo Seok
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.617-624
    • /
    • 2013
  • Low power consuming and highly responsive semiconductor-type microelectromechanical systems (MEMS) gas sensors are fabricated for real-time environmental monitoring applications. This subsystem is developed using a gas sensor module, a Bluetooth module, and a personal digital assistant (PDA) phone. The gas sensor module consists of a $NO_2$ or CO gas sensor and signal processing chips. The MEMS gas sensor is composed of a microheater, a sensing electrode, and sensing material. Metal oxide nanopowder is drop-coated onto a substrate using a microheater and integrated into the gas sensor module. The change in resistance of the metal oxide nanopowder from exposure to oxidizing or deoxidizing gases is utilized as the principle mechanism of this gas sensor operation. The variation detected in the gas sensor module is transferred to the PDA phone by way of the Bluetooth module.

NO Gas Sensing Properties of ZnO-SWCNT Composites (산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성)

  • Jang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.