
Low power consuming and highly responsive 
semiconductor-type microelectromechanical systems 
(MEMS) gas sensors are fabricated for real-time 
environmental monitoring applications. This subsystem is 
developed using a gas sensor module, a Bluetooth module, 
and a personal digital assistant (PDA) phone. The gas 
sensor module consists of a NO2 or CO gas sensor and 
signal processing chips. The MEMS gas sensor is 
composed of a microheater, a sensing electrode, and 
sensing material. Metal oxide nanopowder is drop-coated 
onto a substrate using a microheater and integrated into 
the gas sensor module. The change in resistance of the 
metal oxide nanopowder from exposure to oxidizing or 
deoxidizing gases is utilized as the principle mechanism of 
this gas sensor operation. The variation detected in the gas 
sensor module is transferred to the PDA phone by way of 
the Bluetooth module. 
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I. Introduction 

Wireless sensor networks (WSNs) have many attractive 
applications, inevitably making them an important and 
growing market in the near future [1]. Inventory systems, 
logistics management, healthcare, domestic control, and 
environmental monitoring are only a few examples of WSN 
applications. Such sensor networks require the combination of 
a huge number of inexpensive small sensors with wireless 
communication and ultra-low power consumption. 
Communication can be direct with base stations or in multihop 
networks that are configured ad hoc. 

Air quality control is the main aspect in the field of 
environmental monitoring, as respiratory organ diseases are 
mainly ascribed to poor air quality. Atmospheric environmental 
standards are somewhat different in each country, and air 
quality can be expressed through the concentration of several 
pollutants, such as carbon monoxide, sulphur dioxide, nitrogen 
dioxide, and ozone. The threshold values specified for these 
pollutants by the European Environment Agency (EEA) assure 
indoor air quality of 10 mg/m3, 350 μg/m3, 40 μg/m3, and  
120 μg/m3, respectively [2]. Among these, the sensing of 
carbon monoxide and nitrogen dioxide in the atmosphere has 
been assumed to be of great importance owing to the serious 
problem of atmospheric air pollution caused by automobile 
exhaust and other sources.  

Various types of gas sensors with different operational 
methods have been developed in recent years. In spite of their 
high operating temperature, resistive metal oxide sensors play a 
significant role because of their low cost and high sensitivity. 
Having a smaller size than electrochemical and optical gas 
sensors and lower power consumption than optical gas sensors 
are the other merits of WSN applications [3]-[12]. 
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Metal oxide nanopowders for gas sensors present higher 
sensitivities and shorter recovery times than conventional metal 
oxide film sensors, owing to the effects of their size reduction 
[13]-[17]. For these reasons, metal oxide nanopowders are 
believed to be very promising in the development of a new 
generation of metal oxide sensors with improved properties. 

In this paper, we present the design and experiment results 
of a semiconductor-type microelectromechanical systems 
(MEMS) gas sensor utilizing a metal oxide nanopowder gas 
sensor for the detection of carbon monoxide and nitrogen 
dioxide for a wireless environmental monitoring subsystem, 
which is small enough to be directly attached to wireless 
nodes, such as a Bluetooth head set, and operate using a 
personal digital assistant (PDA). This system is composed of 
four major parts: a gas sensor, sensor-interrogating and 
digital-interfacing printed circuit boards (PCBs), a Bluetooth 
module, and a real-time data acquisition program executed on 
a PDA. The actual performances of our sensor chip and 
wireless environmental monitoring subsystem are evaluated 
for carbon monoxide and nitrogen dioxide gases. These 
results are described and discussed below, along with the 
embodiment processes of the PDA-based wireless 
environmental monitoring subsystem.  

II. Fabrication and Measurements 

1. Metal Oxide MEMS Gas Sensor 

For rapid gas sensing and desorption, a microheater is 
necessary for high-temperature operation. In a microheater 
structure, the two semicircular Pt heaters are connected to the 
power supply and are embedded in the membrane, which 
consists of SiO2 and SiNx thin films. The resistance of each 
heater becomes electrically equal, and each heater line is 
divided in half by the heat-spreading circular line. The 
generated heat diffuses through the heat spreader to promote 
thermal uniformity in the center area, which is thermally 
isolated by air using a membrane structure. The power 
consumption of the microheater device is simulated using 
commercial finite element method software. A uniform 
temperature distribution at the center of the microheater can be 
confirmed, and a temperature of 400ºC is attained at the 
expense of 20 mW of power consumption.  

Based on the above-mentioned design, a bulk micromachined 
microheater is fabricated using a CMOS-compatible MEMS 
process, as shown in Fig. 1. Multilayers are initially deposited 
onto a 500-μm-thick two-sided polished p-type Si wafer, where 
the resistivity is approximately 1 Ω⋅cm to 30 Ω⋅cm and the 
direction is (001). After forming the multilayers, the deposited 
Ti/Pt thin film is patterned for the microheater by using a  

 

Fig. 1. Fabrication process of micro gas sensor based on CMOS-
compatible MEMS process. 
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lift-off process. To maintain electrical insulation between the 
heater and gas sensing electrode and to protect the sensing 
electrode from thermal damage, a SiO2 passivation layer is 
deposited and patterned. We complete the bulk micromachined 
MEMS microheater using back side anisotropic etching with 
KOH (40%wt) at 75ºC [18]-[23], in which etching is 
automatically stopped at the dielectric layer. 

Semiconducting SnO2 nanopowders are synthesized using a 
coprecipitation (CPT) method. For a homogeneous CPT 
process, 0.5 mol/L urea solution is added drop-wise to    
0.025 mol/L of SnCl4⋅5H2O solution, which is stirred over a 
10-minute period. The mixture is then heated slowly to 80ºC 
and allowed to react for four hours. The urea decomposes 
slowly during the release of ammonia and carbonate ions into 
the solution. The gradual and uniform rise in pH results in 
nucleation and growth of uniformly sized and shaped particles 
of the metal oxy-basic carbonate. The mixture is then cooled in 
an ice bath for three hours. After discarding the supernatant, the 
precipitate is washed to remove any traces of chloride ions. It is 
then dried at 120ºC, hand-ground, and calcined in an alumina 
crucible at 550ºC for two hours to form tin oxide powders.  
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Fig. 2. Photographs of MEMS gas sensor based on SnO2
nanopowder. 
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From the calcined SnO2 nanopowders, to increase the response 
for CO gas, other metal oxide nanopowders and rare metals are 
added. Based on the SnO2 nanopowders, 10%wt WO3 
nanopowders and a 0.5%wt Pt solution are mixed and ball 
milled with zirconia balls and ethanol for 48 hours. After ball 
milling, the sensing nanopowders based on SnO2 nanopowders 
are obtained by drying for 12 hours at 120ºC. The structural 
properties of the SnO2 nanopowders are characterized using  
X-ray diffraction (XRD) and a scanning electron microscope 
(SEM) analysis.  

SnO2 nanopowders are drop-coated in slurry form, which is 
a mixture of SnO2 nanopowders, binder, solutions, and so on. 
After SnO2 coating, to obtain a rigid contact between the 
sensing electrode and nanopowders and to obtain a stable gas 
detection operation, rapid thermal annealing is performed using 
an embedded microheater. 

A photograph of the metal oxide nanopowder gas sensor is 
shown in Fig. 2. The photograph is of the packaged gas sensor 
based on SnO2 nanopowders. Because the selective metal 
oxide nanopowder coating process is the final step, the device 
fabrication process is CMOS compatible. 

The current-voltage characteristics are measured using an 
Agilent 4156C semiconductor precision analyzer. For all metal 
oxide nanopowder devices, to obtain a rigid contact between 
the sensing electrode and nanomaterial, rapid thermal 
annealing is performed using an embedded microheater below 
500ºC for less than five minutes. The measured current 
characteristics between the sensing electrodes are sometimes 
unstable, and the current magnitude is about several pA at 1 V 
DC bias before annealing. After annealing, the measured 
current characteristics are always stable and several hundreds 
of pA at 1 V DC bias at room temperature, as shown in Fig. 3. 
Therefore, post-annealing nanopowder devices are used for 
measuring the electrical and gas sensing properties. 

The gas sensing properties are measured using a computer-
controlled characterization system and PDA based on a 
Bluetooth technique. The test gases are mixed with air to 
achieve the desired concentration, and the flow rate is maintained 
constantly using mass flow controllers. The response is given  

 

Fig. 3. Measured current-voltage characteristics of gas sensor at
room temperature before and after annealing. 
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Fig. 4. A schematic diagram of real-time wireless environmental
monitoring system including a gas sensor module,
Bluetooth module, PDA, and processing program. 

   

 
I/O

 

MCU 

DSP 

RAM 

Sensor I/O 2.
4 

G
H

z 
ra

di
o 

I/O
 

MCU

DSP 

RAM

PDA 

Sensor

 
by the relative resistance, R = ΔR/R0 = |Rg–R0|/R0, where Rg and 
R0 are the resistances in the test gas and air, respectively. 

2. Wireless System Design and Sensor Integration 

A schematic diagram of the real-time environmental 
monitoring system consists of a sensing unit, communication 
module, and display module, as shown in Fig. 4. The 
microprocessor-based sensing unit interfaces with sensors and 
is capable of acquisition, digitization, and wireless signal 
transmission using the Bluetooth standard. Due to the necessity 
for communication of the acquired environmental monitoring 
results, a PDA phone is adequate for display and 
communication. 

The sensor can be operated using a simple voltage divider in 
the PDA-based gas sensing measurements. A schematic circuit 
of the sensor module is shown in Fig. 5. 
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Fig. 5. A schematic circuit for sensor module used to measure gas 
sensing performance and control operating temperature of 
developed gas sensor. RH, RS, RLH, and RLS are 
microheater resistance, gas sensor resistance, resistance 
used to measure current flowing in RH, and resistance 
used to measure Vout, respectively. 
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This requires two voltage supplies: microheater voltage, VH, 
and circuit voltage, VS, where VH is applied to the microheater 
to maintain a constant, elevated temperature for optimum 
sensing, and VS is applied to allow for a measurement of the 
output voltage, Vout, across load resistor RLS. 

The change in resistance of the metal oxide nanopowder gas 
sensor is converted into a change in voltage using signal-
conditioning circuits connected to the microprocessor unit. The 
operating temperature of the developed gas sensor is feedback-
controlled using a database that shows the given power-
dependent microheater temperature, digital/analog converter, 
field-effect transistor, and microprocessor. The power 
consumption can be calculated using the data listed above. In 
addition, the power consumption of the commercial gas sensor 
embedded in the wireless environmental monitoring module 
shown in Fig. 6 can be calculated using the voltage and current 
recommended in a commercial brochure. 

To obtain the sensor responses for detecting a gas exposure, 
sensor-interrogating circuits are made on a small PCB with a 
size of about 4 cm × 4 cm, photographs of which are given in 
Fig. 6, in which the front and back sides of the wireless 
environmental monitoring subsystem using the metal oxide 
nanopowder gas sensors are shown. 

The program interfaces with a serial Bluetooth device at the 
host controller interface and universal asynchronous 
receiver/transmitter level. The software is developed on a 
Micorsoft.net platform using Visual C#. It also includes a 
visual interface to plot the real-time data from different sensor 
channels on the wireless device. It can also log and save the 
data in memory for further analysis and comparison. 

 

Fig. 6. Photographs of (a) front and (b) back sides of wireless
environmental monitoring subsystem using MEMS gas
sensor. 
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III. Results and Discussion 

1. Gas Sensor Evaluation  

Various gases, such as NO2 and CO, have been used in 
chemical sensing studies. The monitoring of these gases in the 
environment is of paramount importance. As known, 
chemisorbed gas molecules on a metal oxide surface withdraw 
or donate electrons to the conduction channel, giving rise to a 
conductance change.  

The test gas is balanced with dry air, and nitrogen dioxide 
and carbon monoxide gas concentrations are varied from   
0.1 ppm to 5 ppm and from 1 ppm to 50 ppm, respectively, 
with a fixed carrier gas volume. The above metal oxide 
material (generally n-type semiconductor) devices exposed to 
oxidizing and deoxidizing gases show decreasing and 
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Fig. 7. Gas sensing characteristics of (a) NO2 gas sensor and (b)
CO gas sensor. 
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increasing conductance, respectively, as the gas concentrations 
increase. An operating temperature of about 400ºC is chosen 
for the gas sensor. The measured nitrogen dioxide and carbon 
monoxide gas sensing properties are shown in Figs. 7(a) and 
7(b), respectively. An increasing curve with respect to the 
measured time corresponding to the bottom of the graph 
represents a change in response. For both cases, the gas sensing 
response increases under a higher concentration. The sensor 
device shows responses of about 2.9 and 0.15 for 1-ppm NO2 
and 10-ppm CO, respectively. In addition, the response and 
recovery times for a 90% response rate are 38 s and 20 s, 
respectively, for 1-ppm NO2, and 39 s and 44 s, respectively, 
for 10-ppm CO gas. The performance of the above micro gas 
sensor fulfills the limits for NO2 and CO pollutants set by the 
National Ambient Air Quality Standards of the Korean 
Ministry of Environment, which are 0.1 ppm and 25 ppm [24], 
respectively. 

Despite a variation in base resistance R0, several forms of 
empirical phenomenological formulae describe the dependence 
of the responses of SnO2-based gas sensors on the 
concentration of various gases [25]. Under a flat band condition, 
it is known that the formulae assumes the power law form of R 
= Κ pg

α, where R = ∆R/R0, Κ is a reaction constant, pg is the gas  

 

Fig. 8. Gas concentration dependent gas sensing properties for
(a) 0.1-ppm to 5-ppm NO2 gas and (b) 1-ppm to 50-ppm
CO gas. 
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concentration or partial pressure, and α is an exponent between 
0 and 1 [26]. As our sensor, which consists of nanopowders 
with a thickness of approximately λD, may satisfy the flat band 
condition, it is very likely that the response can be described in 
the equation above. Figures 8(a) and 8(b) show the dependence 
of the response on the NO2 and CO concentrations of the 
sensor. The data is fitted to the above equation, with Κ = 2.6 
and Κ = 0.03 and α = 0.86 and α = 0.62, respectively, where 
the value of exponent α differs somewhat according to the 
nature of the acceptor center [27], [28]. At this high 
temperature, the gas sensing and desorption are facilitated with 
an ultra-low power consumption of about 15 mW, which is a 
benefit of microheater technology. With further optimization 
efforts, the response and recovery times of our gas sensor can 
be reduced to much lower levels. 

2. Evaluation of PDA-Based Environmental Monitoring 
Subsystem 

The operational performance of the PDA-based  
environmental monitoring subsystem is evaluated through a 
response test for CO and NO2 gases. In the environmental 
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monitoring subsystem, a commercial metal oxide gas sensor is 
also integrated, and the performances of the gas sensors, 
including our own, can therefore be tested simultaneously. For 
example, the microheater power consumption, minimum gas 
detection limit, gas response time, and so on can be confirmed 
through the data display on a PDA panel.  

To test the operation of the environmental monitoring 
subsystem, it is placed in a stainless steel chamber through 
which the test gas based on air gas with the desired 
concentration will flow. The response detected in the gas sensor 
is then converted and delivered to the PDA using the Bluetooth 
module. All measurements of the gas responses are 
accomplished twice per second successively by saving the 
response-time profile data, which is composed of the initial 
stabilized voltages for several seconds, the transformed voltage 
variation of the given time exposure to each gas, and a 
recovery profile for the air gas. The measured voltage 
variations are converted and displayed as gas concentration in 
the PDA panel through a comparison with the database stored 
in the PDA, which shows the relation of voltage variations to 
the detected gas concentration.  

The measured multivariate data proceeds with the methods 
described above, extracting the detection response for each 
sensor, one made by us and the other by a commercial product. 
The photograph in Fig. 9 shows the display contents in the 
PDA when the sensor is exposed to nitrogen dioxide and 
carbon monoxide. The type of gas, the power consumption, the 
concentration of the detected gas, and so on are displayed for 
both our gas sensor and a commercial gas sensor. Figures 9(a) 
and 9(b) show the sensing response of the developed NO2 and 
CO gas sensors for 0.1-ppm NO2 gas and 50-ppm CO gas, 
respectively. In both cases, the gas sensing response of our gas 
sensor is similar to that of the commercial gas sensor, but the 
power consumption is lower than that of the commercial one. 

The subsystem described above can be applied to real-time 
environmental monitoring around a user having a ubiquitous 
terminal companion, a ubiquitous sensor network, a smart 
home, an intelligent automobile, and so on. As an example, a 
Bluetooth headset with the developed wireless environmental 
monitoring subsystem having a metal oxide nanopowder gas 
sensor is shown in Fig. 10. The detected environmental 
information, such as the nitrogen dioxide or carbon monoxide 
gas concentration, is displayed on the PDA panel or delivered 
to the user. 

IV. Conclusion 

Metal oxide nanopowder gas sensors for a compact wireless 
environmental monitoring subsystem were developed and their 
experiment results evaluated. The responses of a  

 

 

 

Fig. 9. Photograph of display contents in PDA when sensor is
exposed to (a) 0.1-ppm NO2 and (b) 50-ppm CO,
respectively. 
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Fig. 10. Photograph of Bluetooth headset with wireless
environmental monitoring subsystem having MEMS
gas sensor. 
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semiconductor-type MEMS gas sensor for gases nitrogen 
dioxide and carbon monoxide were about 2.9 and 0.15 for   
1-ppm NO2 and 10-ppm CO, respectively, with a 15-mW 
power consumption. The subsystem presented in this paper 
was developed using a gas sensor module, a Bluetooth module, 
and a PDA phone. The application of this technology can be 
extended toward the development of accurate and reliable 
wireless gas sensors for air quality monitors, automobile 
exhaust monitors, gas leak detectors, and home food spoilage 
monitors, among others. 
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