• Title/Summary/Keyword: NO/cGMp

Search Result 133, Processing Time 0.029 seconds

Altered Regulation of Renal Nitric Oxide and Atrial Natriuretic Peptide Systems in Lipopolysaccharide-induced Kidney Injury

  • Bae, Eun-Hui;Kim, In-Jin;Ma, Seong-Kwon;Lee, Jong-Un;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.273-277
    • /
    • 2011
  • Nitric oxide (NO) and atrial natriuretic peptide (ANP) may induce vascular relaxation by increasing the production of cyclic guanosine monophosphate (cGMP), an important mediator of vascular tone during sepsis. This study aimed to determine whether regulation of NO and the ANP system is altered in lipopolysaccharide (LPS)-induced kidney injury. LPS (10 $mg{\cdot}kg^{-1}$) was injected in the tail veins of male Sprague-Dawley rats; 12 hours later, the kidneys were removed. Protein expression of NO synthase (NOS) and neutral endopeptidase (NEP) was determined by semiquantitative immuno-blotting. As an index of synthesis of NO, its stable metabolites (nitrite/nitrate, NOx) were measured using colorimetric assays. mRNA expression of the ANP system was determined by real-time polymerase chain reaction. To determine the activity of guanylyl cyclase (GC), the amount of cGMP generated in response to sodium nitroprusside (SNP) and ANP was calculated. Creatinine clearance decreased and fractional excretion of sodium increased in LPS-treated rats compared with the controls. Inducible NOS protein expression increased in LPS-treated rats, while that of endothelial NOS, neuronal NOS, and NEP remained unchanged. Additionally, urinary and plasma NOx levels increased in LPS-treated rats. SNP-stimulated GC activity remained unchanged in the glomerulus and papilla in the LPS-treated rats. mRNA expression of natriuretic peptide receptor (NPR)-C decreased in LPS-treated rats, while that of ANP and NPR-A did not change. ANP-stimulated GC activity reduced in the glomerulus and papilla. In conclusion, enhancement of the NO/cGMP pathway and decrease in ANP clearance were found play a role in the pathogenesis of LPS-induced kidney injury.

Ionic Dependence and Modulatory Factors of the Background Current Activated by Isoprenaline in Rabbit Ventricular Cells

  • Leem, Chae-Hun;Lee, Suk-Ho;So, In-Suk;Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.26 no.1
    • /
    • pp.15-25
    • /
    • 1992
  • In order to elucidate the properties of the background current whole cell patch clamp studies were performed in rabbit ventricular cells. Ramp pulses of ${\pm}80\;mV$ from holding potential of 40 mV(or 20 mV) at the speed of 0.8 V/sec were given every 30 sec(or 10 sec) and current-voltage diagrams(I-V curve) were obtained. For the activation of the background current isoprenaline, adenosine 3',5'-cyclic monophosphate(dBcAMP), guanosine 3',5'-cyclic monophosphate(cGMP), and $N^6$-2'-o-dibutyryladenosine 3',5'-cyclic monophosphate(dBcAMP) were applied after all known current systems were blocked with 2mM Ba, 1 mM Cd ,5 mM Ni, 10 ${\mu}M$ diltiazem, 10 ${\mu}m$ ouabain, and 20 mM tetraethylammonium(TEA). The conductance of background current in control was $0.65{\pm}0.69$ nS at 0 mV, its I-V curves was almost linear and reversed near 50 mV. When there was no taurine in pipette solution, isoprenaline hardly activated the background current but when taurine existed in pipette solution, isoprenaline activated the larger background current. Cyclic AMP or cyclic GMP alone had little effect on the activation of the background current, while cGMP potentiated cGMP effect. When the background current was activated with cGMP and cAMP, isoprenaline could not further increased the background current. The background current activated by isoprenaline depended on extracellular $Cl^-$ concentration and its reversal potential was shifted according to chloride equilibrium potential. The change of extracellular $Na+$ concentration had little effect on reversal potential of the background current activated by isoprenaline.

  • PDF

The Hyperthermic Effect of Nitric Oxide in Central Nervous System

  • Jung, Jae-Kyung;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.93-98
    • /
    • 2001
  • The precise mechanism of set-point regulation in hypothalamus was not elucidated. Nitric oxide synthases(NOS) were detected in hypothalamus, however, the roles of NO in hypothalamus was not fully studied. So, we tested the effects of NO on body temperature because preoptic-anterior hypothalamus was known as the presumptive primary fever-producing site. NO donor sodium nitroprusside (SNP, 4 nmol, i.c.v.) elicited marked febrile response, and this febrile response was completely blocked by indomethacin (a cyclooxygenase inhibitor). But, ODQ (selective guanylate cyclase inhibitor, $50\;{\mu}g,$ i.c.v.) did not inhibit fever induced by SNP. The cyclic GMP analogue dibutyryl-cGMP $(100\;{\mu}g,\;i.c.v.)$ induced significant pyreses, which is blocked by indomethacin. $N^G-nitro-L-arginine$ methyl ester (L-NAME, non selective NOS inhibitor) inhibited fever induced by $interleukin-1{\beta}\;(IL-1{\bata},\;10\;ng,\;i.c.v.),$ one of endogenous pyrogens. These results indicate that NO may have an important role, not related to stimulation of soluble guanylate cyclase, in the signal pathway of thermoregulation in hypothalamus.

  • PDF

Is Nitric Oxide Involved in Relaxation of Urinary Bladder\ulcorner

  • Chang, Ki-Churl;Chung, Byung-Ha
    • Biomolecules & Therapeutics
    • /
    • v.3 no.1
    • /
    • pp.58-62
    • /
    • 1995
  • We investigated whether nitric oxide (NO) may serve a role in bladder function by immunohistochemical analysis of the distribution of intrinsic NADPH-diaphorase and functional study of isometric tension recordings via a photo-induced adequate nitric oxide (PIANO) generating system using rat bladder. Results suggest that a small number of NADPH-diaphorase-positive perikarya are present within the bladder wall and within adjacent small ganglia. Furthermore, NADPH-diaphorase-positive nerve fibers were observed in the adventitial and muscular layers, subjacent to the urothelium and perivascular fibers. Rat bladder strips precontracted with 3$\mu$M carbachol were reversibly relaxed upon NO generation by UV irradiation. PIANO-mediated relaxation was sensitive to oxygen free radicals. In addition, tissue cGMP levels were increased by the PIANO generating system and elevated cGMP levels were decreased by pretreatment of guanylate cyclase inhibitor, methylene blue. These results indicate that NO may serve a role in modulating bladder tone in the rat.

  • PDF

Effect of Hydrocortisone and Furosemide on the Renal Cyclic Nucleotides Content in Rat (흰쥐 신조직내 Cyclic Nucleotide 함량에 미치는 Hydrocortisone과 Furosemide의 영향)

  • Cho, Kyu-Chul;Kim, In-Soon;Yang, Jae-Ha;Park, Young-Suh
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.93-99
    • /
    • 1983
  • Hydrocortisone 5 mg/kg which exerts minimal effect on the renal function and furosemide 1 mg/kg which induces moderate amount of diuresis were injected intraperitoneally to study their effects on the renal cyclic nucleotides content in rats. 1) The renal tissue levels of cAMP were significantly increased by administration of hydrocortisone, but there was no significant change in the furosemide group compared with that of saline treated control group. Moderate elevation in renal cAMP level was noted by the combined administration of hydrocortisone and furosemide, but this elevation was less than that of hvdrocortisone treated group. 2) The renal cGMP level did not show nay remarkable change after the administration of hydrocortisone, however, there were a significant increase by the administration of furosemide alone or combination of both drugs. The level of renal cGMP was higher and maintained longer in the combined treated group than furosemide treated group. The result of this experiment indicates that the potentiating effect of hydrocortisone on the diuretic action of furosemide nay be related to the renal levels of cGMP rather than that of cAMP.

  • PDF

Role of Exogenous Nitric Oxide Generated through Microwave Plasma Activate the Oxidative Signaling Components in Differentiation of Myoblast cells into Myotube

  • Kumar, Naresh;Shaw, Priyanka;Attri, Pankaj;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.158-158
    • /
    • 2015
  • Myoblast are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of skeletal muscle; The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for Nitric oxide (NO) in muscle biology1,2,3. However, the expression and subcellular localization of NO in muscle development and myoblast differentiation are largely unknown. In this study, we examined effects of the nitric oxide generated by a microwave plasma torch, on proliferation/differentiation of rat myoblastic L6 cells. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimetres per minute. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the ratio of oxygen gas, and the microwave power4. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to L6 skeletal muscles. Differentiation of L6 cells into myotubes was significantly enhanced the differentiation after nitric oxide treatment. Nitric oxide treatment also increase the expression of myogenesis marker proteins and mRNA level, such as myogenin and myosin heavy chain (MHC), as well as cyclic guanosine monophosphate (cGMP), However during the myotube differentiation we found that NO activate oxidative stress signaling erks expression. Therefore, these results establish a role of NO and cGMP in regulating myoblast differentiation and elucidate their mechanism of action, providing a direct link with oxidative stress signalling, which is a key player in myogenesis. Based on these findings, nitric oxide generated by plasma can be used as a possible activator of cell differentiation and tissue regeneration.

  • PDF

Changes in Quality of Shiitake Mushroom(Lentinus edodes) by Different Drying Methods (건조방법에 따른 표고버섯의 품질변화)

  • Baek, Hyung-Hee;Kim, Dong-Man;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.145-148
    • /
    • 1989
  • Shiitake mushrooms were dried by hot air, far infrared and freeze dryers in order to compare qualities after drying. When hot air drying was performed with the four temperature variations ranged from $45\;to\;70^{\circ}C$, there was tendency to increase volume retention but decrease rehydration ratio, as drying temperature increased. And the largest amout of 5'-GMP was contained in mushroom dried at $50^{\circ}C$. For far infrared drying, volume retentions were lower but rehydration ratios were higher, as compared with hot air drying at the same temperature. In freeze drying, freezing rate had no influence on volume retention but rehydration ratio was highest value when frozen at $-18^{\circ}C$. As shelf temperature increased(drying rate increased), rehydration ratio increased. Also, contents of 5'-AMP, 5'-GMP and 5'-XMP increased with the increase of freezing rate and drying rate.

  • PDF

Electrolysis of Physiological Salt Solution Generates a Factor that Relaxes Vascular Smooth Muscle

  • Song, Pil-Oh;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.2
    • /
    • pp.217-223
    • /
    • 1998
  • Oxygen-derived free radicals have been implicated in many important functions in the biological system. Electrical field stimulation (EFS) causes arterial relaxation in animal models. We found that EFS applied to neither muscle nor nerve but to Krebs solution caused a relaxation of rat aorta that had been contracted with phenylephrine. In the present study, therefore, we investigated the characteristics of this EIRF (electrolysis-induced relaxing factor) using rat isolated aorta. Results indicated that EIRF acts irrespective of the presence of endothelium. EIRF shows positive Griess reaction and is diffusible and quite stable. EIRF-induced relaxation was stronger on PE-contracted aorta than on KCl-contracted one, and inhibited by the pretreatment with methylene blue. Zaprinast, a cGMP-specific phosphodiesterase inhibitor, potentiated the EIRF-induced relaxation. $N^G-nitro-L-arginine$, NO synthase inhibitor, did not inhibit the EIRF-induced relaxation. Deferroxamine, but not ascorbic acid, DMSO potentiated the EIRF-induced relaxation. These results indicate that electrolysis of Krebs solution produces a factor that relaxes vascular smooth muscle via cGMP-mediated mechanism.

  • PDF

Effect of Arsenic on Acetylcholine-Induced Relaxation in Blood Vessels in vitro cad in vivo

  • Lee, M.Y.;Chung, S.M.;Bae, O.N.;Chung, J.H.
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 2002.05a
    • /
    • pp.137-137
    • /
    • 2002
  • Several epidemiologidal studies suggested that arsenic exposure was strongly correlated with the development of cardiovascular disease such as hypertension. In order to examine whether arsenic affects vasomotor tone in blood vessels, we investigated the effect of arsenic on agonist-induced vasorelaxation using the isolated rat aortic ring in in vitro organ bath system. Treatment with arsenite inhibited acetylcholine-induced relaxation of aortic rings in a concentration- dependent manner. The inhibitory effects by arsenic were also observed in the relaxation induced by sodium nitroprusside, a NO-donor. Consistent with these findings, the cGMP levels stimulated by acetylcholine in blood vessels were reduced significantly by arsenite treatment. In addition, higher concentration of arsenite decreased the relaxation by 8-Br-cGMP, a cGMP analog, in aortic rings without endothelium. These in vitro results indicated that arsenite that arsenite was capable of suppressing acetylcholine-induced relaxation in blood vessels by inhibiting production of nitric oxide in endothelial cells and by impairing the relaxation machinary in smooth muscle cells. In vivo studies revealed that the reduction of blood pressure by acetylcholine infusion was signigicantly suppressed after arsenite was administered intravenously to rate. These data suggest that vasomotor tone impaired by arsenite exposure may be one of the contrbuting factors in development of cardiovascular disease.

  • PDF

Study on the Mechanism of Vascular Relaxation of Ethanol Extract of Persicaria Perfoliata H. Gross (하백초 에탄올 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Choi, Byung-Sun;Choi, Eun-Hee;Cui, Hao-Zhen;Kang, Dae-Gill;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.389-396
    • /
    • 2009
  • The ethanol extract of Persicaria perfoliata (EPP) induced relaxation of the phenylephrine-precontracted aorta in a dose-dependent manner, which was abolished by removal of functional endothelium. Pretreatment of the aortic tissues with NG-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4}-oxadiazole-[4,3-${\alpha}$)-quinixalin-1-one (ODQ) inhibited the relaxation induced by EPP. However, EPP-induced relaxation was not blocked by pretreatment with indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolol. Incubation of endothelium-intact thoracic aortic ring with EPP increased the production of cGMP, which was also blocked by pretreatment with L-NAME or ODQ. These results suggest that EPP dilates vascular smooth muscle via endothelium-dependent NO/cGMP signaling.