• Title/Summary/Keyword: NN search

Search Result 56, Processing Time 0.034 seconds

A KD-Tree-Based Nearest Neighbor Search for Large Quantities of Data

  • Yen, Shwu-Huey;Hsieh, Ya-Ju
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.459-470
    • /
    • 2013
  • The discovery of nearest neighbors, without training in advance, has many applications, such as the formation of mosaic images, image matching, image retrieval and image stitching. When the quantity of data is huge and the number of dimensions is high, the efficient identification of a nearest neighbor (NN) is very important. This study proposes a variation of the KD-tree - the arbitrary KD-tree (KDA) - which is constructed without the need to evaluate variances. Multiple KDAs can be constructed efficiently and possess independent tree structures, when the amount of data is large. Upon testing, using extended synthetic databases and real-world SIFT data, this study concludes that the KDA method increases computational efficiency and produces satisfactory accuracy, when solving NN problems.

Ordered Reverse k Nearest Neighbor Search via On-demand Broadcast

  • Li, Li;Li, Guohui;Zhou, Quan;Li, Yanhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3896-3915
    • /
    • 2014
  • The Reverse k Nearest Neighbor (RkNN) query is valuable for finding objects influenced by a specific object and is widely used in both scientific and commercial systems. However, the influence level of each object is unknown, information that is critical for some applications (e.g. target marketing). In this paper, we propose a new query type, Ordered Reverse k Nearest Neighbor (ORkNN), and make efforts to adapt it in an on-demand scenario. An Order-k Voronoi diagram based approach is used to answer ORkNN queries. In particular, for different values of k, we pre-construct only one Voronoi diagram. Algorithms on both the server and the clients are presented. We also present experimental results that suggest our proposed algorithms may have practical applications.

kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns (데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘)

  • Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1437-1457
    • /
    • 2016
  • In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.

An Improvement in K-NN Graph Construction using re-grouping with Locality Sensitive Hashing on MapReduce (MapReduce 환경에서 재그룹핑을 이용한 Locality Sensitive Hashing 기반의 K-Nearest Neighbor 그래프 생성 알고리즘의 개선)

  • Lee, Inhoe;Oh, Hyesung;Kim, Hyoung-Joo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.11
    • /
    • pp.681-688
    • /
    • 2015
  • The k nearest neighbor (k-NN) graph construction is an important operation with many web-related applications, including collaborative filtering, similarity search, and many others in data mining and machine learning. Despite its many elegant properties, the brute force k-NN graph construction method has a computational complexity of $O(n^2)$, which is prohibitive for large scale data sets. Thus, (Key, Value)-based distributed framework, MapReduce, is gaining increasingly widespread use in Locality Sensitive Hashing which is efficient for high-dimension and sparse data. Based on the two-stage strategy, we engage the locality sensitive hashing technique to divide users into small subsets, and then calculate similarity between pairs in the small subsets using a brute force method on MapReduce. Specifically, generating a candidate group stage is important since brute-force calculation is performed in the following step. However, existing methods do not prevent large candidate groups. In this paper, we proposed an efficient algorithm for approximate k-NN graph construction by regrouping candidate groups. Experimental results show that our approach is more effective than existing methods in terms of graph accuracy and scan rate.

A Efficient Method of Extracting Split Points for Continuous k Nearest Neighbor Search Without Order (무순위 연속 k 최근접 객체 탐색을 위한 효율적인 분할점 추출기법)

  • Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.927-930
    • /
    • 2010
  • Recently, continuous k-nearest neighbor query(CkNN) which is defined as a query to find the nearest points of interest to all the points on a given path is widely used in the LBS(Location Based Service) and ITS(Intelligent Transportation System) applications. It is necessary to acquire results quickly in the above applications and be applicable to spatial network databases. This paper proposes a new method to search nearest POIs(Point Of Interest) for moving query objects on the spatial networks. The method produces a set of split points and their corresponding k-POIs as results. There is no order between the POIs. The analysis show that the proposed method outperforms the existing methods.

  • PDF

A Distributed Spatial Indexing Technique based on Hilbert Curve and MBR for k-NN Query Processing in a Single Broadcast Channel Environment (단일방송채널환경에서 k-최근접질의 처리를 위한 힐버트 곡선과 최소영역 사각형 기반의 분산 공간 인덱싱 기법)

  • Yi, Jung-Hyung;Jung, Sung-Won
    • Journal of KIISE:Databases
    • /
    • v.37 no.4
    • /
    • pp.203-208
    • /
    • 2010
  • This paper deals with an efficient index scheduling technique based on Hilbert curve and MBR for k-NN query in a single wireless broadcast channel environment. Previous works have two major problems. One is that they need a long time to process queries due to the back-tracking problem. The other is that they have to download too many spatial data since they can not reduce search space rapidly. Our proposed method broadcasts spatial data based on Hilbert curve order where a distributed index table is also broadcast with each spatial data. Each entry of index table represents the MBR which groups spatial data. By predicting the unknown location of spatial data, our proposed index scheme allows mobile clients to remove unnecessary data and to reduce search space rapidly. As a result, our method gives the decreased tuning time and access latency.

Predicting the splitting tensile strength of concrete using an equilibrium optimization model

  • Zhao, Yinghao;Zhong, Xiaolin;Foong, Loke Kok
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.81-93
    • /
    • 2021
  • Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.

Speaker Detection and Recognition for a Welfare Robot

  • Sugisaka, Masanori;Fan, Xinjian
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.835-838
    • /
    • 2003
  • Computer vision and natural-language dialogue play an important role in friendly human-machine interfaces for service robots. In this paper we describe an integrated face detection and face recognition system for a welfare robot, which has also been combined with the robot's speech interface. Our approach to face detection is to combine neural network (NN) and genetic algorithm (GA): ANN serves as a face filter while GA is used to search the image efficiently. When the face is detected, embedded Hidden Markov Model (EMM) is used to determine its identity. A real-time system has been created by combining the face detection and recognition techniques. When motivated by the speaker's voice commands, it takes an image from the camera, finds the face inside the image and recognizes it. Experiments on an indoor environment with complex backgrounds showed that a recognition rate of more than 88% can be achieved.

  • PDF

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Jeong, Ji-Mun
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.517-530
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However, Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets showed that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also showed that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF

Study on Continuous Nearest Neighbor Query on Trajectory of Moving Objects (이동객체의 궤적에 대한 연속 최근접 질의에 관한 연구)

  • Chung, Ji-Moon
    • Journal of Digital Convergence
    • /
    • v.3 no.1
    • /
    • pp.149-163
    • /
    • 2005
  • Researches for NN(nearest neighbor) query which is often used in LBS system, have been worked. However. Conventional NN query processing techniques are usually meaningless in moving object management system for LBS since their results may be invalidated as soon as the query and data objects move. To solve these problems, in this paper we propose a new nearest neighbor query processing technique, called CTNN, which is possible to meet continuous trajectory nearest neighbor query processing. The proposed technique consists of Approximate CTNN technique which has quick response time, and Exact CTNN technique which makes it possible to search accurately nearest neighbor objects. Experimental results using GSTD datasets shows that the Exact CTNN technique has high accuracy, but has a little low performance for response time. They also shows that the Approximate CTNN technique has low accuracy comparing with the Exact CTNN, but has high response time.

  • PDF