Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.1.081

Predicting the splitting tensile strength of concrete using an equilibrium optimization model  

Zhao, Yinghao (Guangzhou Institute of Building Science Co., Ltd.)
Zhong, Xiaolin (Guangzhou Testing Centre of Construction quality & safety Co., Ltd.)
Foong, Loke Kok (Institute of Research and Development, Duy Tan University)
Publication Information
Steel and Composite Structures / v.39, no.1, 2021 , pp. 81-93 More about this Journal
Abstract
Splitting tensile strength (STS) is an important mechanical parameter of concrete. This study offers novel methodologies for the early prediction of this parameter. Artificial neural network (ANN), which is a leading predictive method, is synthesized with two metaheuristic algorithms, namely atom search optimization (ASO) and equilibrium optimizer (EO) to achieve an optimal tuning of the weights and biases. The models are applied to data collected from the published literature. The sensitivity of the ASO and EO to the population size is first investigated, and then, proper configurations of the ASO-NN and EO-NN are compared to the conventional ANN. Evaluating the prediction results revealed the excellent efficiency of EO in optimizing the ANN. Accuracy improvements attained by this algorithm were 13.26 and 11.41% in terms of root mean square error and mean absolute error, respectively. Moreover, it raised the correlation from 0.89958 to 0.92722. This is while the results of the conventional ANN were slightly better than ASO-NN. The EO was also a faster optimizer than ASO. Based on these findings, the combination of the ANN and EO can be an efficient non-destructive tool for predicting the STS.
Keywords
structural engineering; concrete; tensile strength; neural network; metaheuristic algorithms;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ding, L., Li, S., Gao, H., Chen, C. and Deng, Z. (2018), "Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems", IEEE T. Syst. Man, Cy.: Syst., 50(7), 2512-2523.   DOI
2 Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020), "Equilibrium optimizer: A novel optimization algorithm", Knowledge-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.   DOI
3 Fu, X., Pace, P., Aloi, G., Yang, L. and Fortino, G. (2020), "Topology Optimization Against Cascading Failures on Wireless Sensor Networks Using a Memetic Algorithm", Computer Networks, 177(4), 107327. https://doi.org/10.1016/j.comnet.2020.107327.   DOI
4 Gesoglu, M., Guneyisi, E., Nahhab, A.H. and Yazici, H. (2016), "The effect of aggregates with high gypsum content on the performance of ultra-high strength concretes and Portland cement mortars", Constr. Build. Mater., 110, 346-354. https://doi.org/10.1016/j.conbuildmat.2016.02.045.   DOI
5 Getahun, M.A., Shitote, S.M. and Gariy, Z.C.A. (2018), "Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes", Constr. Build. Mater., 190, 517-525. https://doi.org/10.1016/j.conbuildmat.2018.09.097.   DOI
6 Gholampour, A., Mansouri, I., Kisi, O. and Ozbakkaloglu, T. (2020), "Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models", Neural Comput. Appl., 32(1), 295-308. https://doi.org/10.1007/s00521-018-3630-y.   DOI
7 Alam, Z., Zhang, C. and Samali, B. (2020b), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19 (1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.   DOI
8 Almagboul, M.A., Shu, F., Qian, Y., Zhou, X., Wang, J. and Hu, J. (2019), "Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null", AEU-Int. J. Electron. Commun., 111 152854. https://doi.org/10.1016/j.aeue.2019.152854.   DOI
9 Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24 (1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.   DOI
10 Gholipour, G., Zhang, C. and Mousavi, A.A. (2020), "Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads", Eng. Struct., 219, https://doi.org/10.1016/j.engstruct.2020.110924.   DOI
11 Yang, M. and Sowmya, A. (2015), "An underwater color image quality evaluation metric", IEEE T. Image Process., 24(12), 6062-6071. https://doi.org/10.1109/TIP.2015.2491020   DOI
12 Zhang, S., Zhang, J., Ma, Y. and Pak, R.Y. (2021a), "Vertical dynamic interactions of poroelastic soils and embedded piles considering the effects of pile-soil radial deformations", Soils and Foundations, 61(1), 16-34. https://doi.org/10.1016/j.sandf.2020.10.003.   DOI
13 Zhang, W. (2020), "Parameter Adjustment Strategy and Experimental Development of Hydraulic System for Wave Energy Power Generation", Symmetry, 12(5), 711. https://doi.org/10.3390/sym12050711.   DOI
14 Zhang, W., Tang, Z., Yang, Y. and Wei, J. (2021b), "Assessment of FRP-Concrete Interfacial Debonding with Coupled Mixed-Mode Cohesive Zone Model", J. Compos. Constr., 25(2), 04021002.   DOI
15 Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w.   DOI
16 Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Cleaner Production, 202 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.   DOI
17 Behnood, A., Verian, K.P. and Gharehveran, M.M. (2015), "Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength", Constr. Build. Mater., 98 519-529. https://doi.org/10.1016/j.conbuildmat.2015.08.124.   DOI
18 Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.   DOI
19 Topcu, I.B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011.   DOI
20 Zhang, J., Huang, Y., Wang, Y. and Ma, G. (2020c), "Multi-objective optimization of concrete mixture proportions using machine learning and metaheuristic algorithms", Constr. Build. Mater., 253, 119208. https://doi.org/10.1016/j.conbuildmat.2020.119208.   DOI
21 Vakhshouri, B. and Nejadi, S. (2018), "Prediction of compressive strength of self-compacting concrete by ANFIS models", Neurocomput., 280, 13-22. 10.1016/j.neucom.2017.09.099.   DOI
22 Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019a), "Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.   DOI
23 Zenggang, X., Zhiwen, T., Xiaowen, C., Xue-min, Z., Kaibin, Z. and Conghuan, Y. (2019), "Research on image retrieval algorithm based on combination of color and shape features", J. Signal Process. Syst., 1-8. https://doi.org/10.1007/s11265-019-01508-y.   DOI
24 Zhang, C.W., Ou, J.P. and Zhang, J.Q. (2006), "Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers", Struct. Control Health Monit., 13(5), 885-896. https://doi.org/10.1002/stc.63.   DOI
25 Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020a), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, https://doi.org/10.1016/j.engstruct.2020.111219.   DOI
26 Zhang, C., Gholipour, G. and Mousavi, A.A. (2019b), "Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading", Eng. Struct., 181, 124-142. https://doi.org/10.1016/j.engstruct.2018.12.014.   DOI
27 Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. Eng., 1-31. https://doi.org/10.1007/s11831-020-09467-5.   DOI
28 Zhang, C. and Wang, H. (2019a), "Robustness of the Active Rotary Inertia Driver System for Structural Swing Vibration Control Subjected to Multi-Type Hazard Excitations", Appl. Sci., 9(20), https://doi.org/10.3390/app9204391.   DOI
29 Wang, B., Zhang, B.F., Liu, X.W. and Zou, F.C. (2020b), "Novel infrared image enhancement optimization algorithm combined with DFOCS", Optik, 224, 165476. https://doi.org/10.1016/j.ijleo.2020.165476.   DOI
30 Wang, B., Zhang, B., Liu, X. and Zou, F. (2020a), "Novel infrared image enhancement optimization algorithm combined with DFOCS", Optik, 224, 165476.   DOI
31 Wang, J., Huang, Y., Wang, T., Zhang, C., Liu, Y hui (2020c), "Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures", Appl. Soft Comput., 93, https://doi.org/10.1016/j.asoc.2020.106372.   DOI
32 Wu, C., Wang, X., Chen, M. and Kim, M.J. (2019a), "Differential received signal strength based RFID positioning for construction equipment tracking", Adv. Eng. Inform., 42, https://doi.org/10.1016/j.aei.2019.100960.   DOI
33 Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M. and Wang, X. (2021) "Ontological knowledge base for concrete bridge rehabilitation project management", Automat. Constr., 121, https://doi.org/10.1016/j.autcon.2020.103428.   DOI
34 Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. nad Guan, Z. (2018), "Reducing Complexity of HEVC: A Deep Learning Approach". IEEE T. Image Process., 27(10), 5044-5059. https://doi.org/10.1109/TIP.2018.2847035   DOI
35 Xu, S., Wang, J., Shou, W., Ngo, T., Sadick, A.M. and Wang, X. (2020), "Computer vision techniques in construction: A critical review", Arch. Comput. Method. Eng., 1-15. https://doi.org/10.1007/s11831-020-09504-3.   DOI
36 Yan, K., Xu, H., Shen, G. and Liu, P. (2013), "Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine", Adv. Mater. Sci. Eng., 2013, https://doi.org/10.1155/2013/597257   DOI
37 Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.   DOI
38 Zhang, C. and Wang, H. (2019b), "Swing Vibration Control of Suspended Structure Using Active Rotary Inertia Driver System: Parametric Analysis and Experimental Verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144.   DOI
39 Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monit., 27(6), https://doi.org/10.1002/stc.2543.   DOI
40 Zhang, H., Qiu, Z., Cao, J., Abdel-Aty, M. and Xiong, L. (2019c), "Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays", IEEE T. Neural Networks Learning Syst., 31(11), 4437-4450. https://doi.org/10.1109/TNNLS.2019.2955287.   DOI
41 Grzywinski, M., Selejdak, J. and Dede, T. (2019), "Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm", Steel Compos. Struct., 33(5), 747-753. 10.12989/scs.2019.33.5.747   DOI
42 Gulbandilar, E. and Kocak, Y. (2019), "Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN", Int. J. Economic Environ. Geology, 32-40. https://doi.org/10.46660/ijeeg.Vol0.Iss0.0.41.   DOI
43 He, L., Chen, Y. and Li, J. (2018), "A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains", Resour. Conserv. Recy., 133, 206-228. https://doi.org/10.1016/j.resconrec.2018.02.015   DOI
44 Hekimoglu, B. (2019), "Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm", IEEE Access, 7, 38100-38114. https://doi.org/10.1109/ACCESS.2019.2905961.   DOI
45 Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with bsp and hpfl under combined loadings", J. Struct. Eng., 146(8), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.   DOI
46 Qu, S., Han, Y., Wu, Z. and Raza, H. (2020), "Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization", Group Decision and Negotiation https://doi.org/10.1007/s10726-020-09707-w.   DOI
47 Yang, C., Gao, F. and Dong, M. (2020a), "Energy Efficiency Modeling of Integrated Energy System in Coastal Areas", J. Coast. Res., 103, 995-1001. https://doi.org/10.2112/SI103-207.1.   DOI
48 Yang, J., Li, S., Wang, Z., Dong, H., Wang, J. and Tang, S. (2020b), "Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges", Materials, 13(24), https://doi.org/10.3390/ma13245755   DOI
49 Yang, L. and Chen, H. (2019), "Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network", Neural Comput. Appl., 31(9), 4463-4478. https://doi.org/10.1007/s00521-018-3525-y.   DOI
50 Wu, T., Cao, J., Xiong, L. nad Zhang, H, (2019b), "New Stabilization Results for Semi-Markov Chaotic Systems with Fuzzy Sampled-Data Control", Complexity, 2019, 7875305. https://doi.org/10.1155/2019/7875305.   DOI
51 Quan, Q., Hao, Z., Xifeng, H. and Jingchun, L. (2020), "Research on water temperature prediction based on improved support vector regression", Neural Comput. Appl., 1-10. https://doi.org/10.1007/s00521-020-04836-4.   DOI
52 Rabehi, A., Nail, B., Helal, H., Douara, A., Ziane, A., Amrani, M., Akkal, B. and Benamara, Z. (2020), "Optimal estimation of Schottky diode parameters using a novel optimization algorithm: Equilibrium optimizer", Superlatt.Microstruct., 146, 106665. https://doi.org/10.1016/j.spmi.2020.106665.   DOI
53 Nematzadeh, M., Shahmansouri, A.A. and Fakoor, M. (2020), "Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP", Constr. Build. Mater., 252, 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.   DOI
54 Cao, B., Dong, W., Lv, Z., Gu, Y., Singh, S. and Kumar, P. (2020a), "Hybrid Microgrid Many-Objective Sizing Optimization With Fuzzy Decision", IEEE T. Fuzzy Syst., 28 (11), 2702-2710.   DOI
55 Jiang, W., Xie, Y., Li, W., Wu, J. and Long, G. (2021), "Prediction of the splitting tensile strength of the bonding interface by combining the support vector machine with the particle swarm optimization algorithm", Eng. Struct., 230, https://doi.org/10.1016/j.engstruct.2020.111696.   DOI
56 Roy, D.K., Barzegar, R., Quilty, J. and Adamowski, J. (2020), "Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones", J. Hydrology, 591, 125509. https://doi.org/10.1016/j.jhydrol.2020.125509.   DOI
57 Severcan, M.H. (2012), "Prediction of splitting tensile strength from the compressive strength of concrete using GEP", Neural Comput. Appl., 21(8), 1937-1945. https://doi.org/10.1007/s00521-011-0597-3.   DOI
58 Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrology, 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001.   DOI
59 Shaswat, K. (2021), "Concrete slump prediction modeling with a fine-tuned convolutional neural network: hybridizing sea lion and dragonfly algorithms", Environ. Sci. Pollut. Res., 1-12. https://doi.org/10.1007/s11356-020-12244-3.   DOI
60 Shi, K., Wang, J., Tang, Y. and Zhong, S. (2020a), "Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies", Fuzzy Set. Syst., 381, 1-25. https://doi.org/10.1016/j.fss.2018.11.017.   DOI
61 Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomatics, Natural Hazards and Risk, 10(1), 1667-1693.   DOI
62 Cao, B., Zhao, J., Gu, Y., Ling, Y. and Ma, X. (2020e), "Applying graph-based differential grouping for multiobjective large-scale optimization", Swarm Evolutionary Comput., 53, 100626. https://doi.org/10.1016/j.swevo.2019.100626.   DOI
63 Cao, B., Fan, S., Zhao, J., Yang, P., Muhammad, K. and Tanveer, M (2020b), "Quantum-enhanced multiobjective large-scale optimization via parallelism", Swarm Evolutionary Comput., 57 100697. https://doi.org/10.1016/j.swevo.2020.100697.   DOI
64 Cao, B., Wang, X., Zhang, W. and Song, H. and Lv, Z. (2020c), "A Many-Objective Optimization Model of Industrial Internet of Things Based on Private Blockchain", IEEE Network, 34(5), 78-83. https://doi.org/10.1109/MNET.011.1900536.   DOI
65 Cao, B., Zhao, J., Gu, Y., Fan, S. and Yang, P. (2020d), "Security-Aware Industrial Wireless Sensor Network Deployment Optimization", IEEE T. Ind. Inform., 16(8), 5309-5316. https://doi.org/10.1109/TII.2019.2961340.   DOI
66 Cao, B., Zhao, J., Lv, Z., Gu, Y., Yang, P. and Halgamuge, S.K. (2020f), "Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction", IEEE T. Fuzzy Syst., 28(5), 939-952. https://doi.org/10.1109/TFUZZ.2020.2972207.   DOI
67 Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K. and Nasseri, M. (2020g), "An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm", Energy Reports, 6, 530-542. https://doi.org/10.1016/j.egyr.2020.02.035.   DOI
68 Chaabene, W.B., Flah, M. and Nehdi, M.L. (2020), "Machine learning prediction of mechanical properties of concrete: Critical review", Constr. Build. Mater., 260 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889.   DOI
69 Ozcan, F. (2012) "Gene expression programming based formulations for splitting tensile strength of concrete". Constr. Build. Mater., 26(1), 404-410. https://doi.org/10.1016/j.conbuildmat.2011.06.039.   DOI
70 Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415   DOI
71 Piotrowski, A.P., Osuch, M., Napiorkowski, M.J., Rowinski, P.M. and Napiorkowski, J.J. (2014), "Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river", Comput. Geosci., 64, 136-151. https://doi.org/10.1016/j.cageo.2013.12.013.   DOI
72 Qian, J., Feng, S., Li, Y., Tao, T., Han, J., Chen, Q. and Zuo, C. (2020a), "Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry", Opt. Lett., 45(7), 1842-1845. https://doi.org/10.1364/OL.388994.   DOI
73 Qian, J., Feng, S., Tao, T., Hu, Y., Li, Y., Chen, Q. and Zuo, C. (2020b), "Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement". APL Photonics, 5(4), 046105. https://doi.org/10.1063/5.0003217.   DOI
74 Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241.   DOI
75 Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.   DOI
76 Mou, B., Li, X., Bai, Y. and Wang, L. (2019a), "Shear behavior of panel zones in steel beam-to-column connections with unequal depth of outer annular stiffener", J. Struct. Eng., 145(2), 04018247.   DOI
77 Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a) "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340.   DOI
78 Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid. A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.   DOI
79 More, J.J. (1978), Numerical analysis, 105-116.
80 Kordestani, H., Zhang, C. and Shadabfar, M. (2020), "Beam damage detection under a moving load using random decrement technique and Savitzky-Golay Filter", Sensors, 20(1), 243.   DOI
81 Lv, Z. and Qiao, L. (2020), "Deep belief network and linear perceptron based cognitive computing for collaborative robots", Appl. Soft Comput., 92, https://doi.org/10.1016/j.asoc.2020.106300.   DOI
82 Shi, K., Wang, J., Zhong, S., Tang, Y. and Cheng, J. (2020b), "Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control", Fuzzy Set. Syst., 394, 40-64. https://doi.org/10.1016/j.fss.2019.09.001.   DOI
83 Sun, G., Yang, B., Yang, Z. and Xu, G. (2019), "An adaptive differential evolution with combined strategy for global numerical optimization", Soft Comput., 1-20. https://doi.org/10.1007/s00500-019-03934-3.   DOI
84 Karthiyaini, S., Senthamaraikannan, K., Priyadarshini, J., Gupta, K. and Shanmugasundaram, M. (2019), "Prediction of mechanical strength of fiber admixed concrete using multiple regression analysis and artificial neural network", Adv. Mater. Sci. Eng., 2019, https://doi.org/10.1155/2019/4654070.   DOI
85 Jovic, S., Babic, L., Miskovic, A., Cirkovic, B. and Camagic, I .(2019), "Ranking of the most influential parameters for compressive strength of no-slump concrete prediction by neuro-fuzzy logic", Struct. Concrete, https://doi.org/10.1002/suco.201900349.   DOI
86 Ju, Y., Shen, T. and Wang, D. (2020), "Bonding behavior between reactive powder concrete and normal strength concrete", Constr. Build. Mater., 242, https://doi.org/10.1016/j.conbuildmat.2020.118024.   DOI
87 Kadhem, E., Ali, A. and Tobeia, S. (2018), "Experimental comparative study of reactive powder concrete: mechanical properties and the effective factors", MATEC Web of Conferences, https://doi.org/10.1051/matecconf/201816204004.
88 Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Automat. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011.   DOI
89 Sun, Y., Wang, J., Wu, J., Shi, W., Ji, D., Wang, X. and Zhao, X. (2020b), "Constraints hindering the development of high-rise modular buildings", Appl. Sci., 10(20), https://doi.org/10.3390/app10207159.   DOI
90 Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020a), "Effect of Axial Compression Ratio on Seismic Behavior of GFRP Reinforced Concrete Columns", Int. J. Struct. Stab. Dynam., 20(6), https://doi.org/10.1142/S0219455420400040.   DOI
91 Tavana Amlashi, A., Ghanizadeh, A.R., Abbaslou, H. and Alidoust, P. (2019), "Developing three hybrid machine learning algorithms for predicting the mechanical properties of plastic concrete samples with different geometries", AUT J. Civil Eng., 4(1), 4-4.
92 Murad, Y.Z., Hunifat, R. and Wassel, A.B. (2020), "Interior Reinforced Concrete Beam-to-Column Joints Subjected to Cyclic Loading: Shear Strength Prediction using Gene Expression Programming", Case Studies in Constr. Mater., 13 e00432. https://doi.org/10.1016/j.cscm.2020.e00432.   DOI
93 Nazari, A. and Azimzadegan, T. (2012), "Prediction the effects of ZnO2 nanoparticles on splitting tensile strength and water absorption of high strength concrete", Mater. Res., 15(3), 440-454. https://doi.org/10.1590/S1516-14392012005000057.   DOI
94 Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T. and Sui, S. (2019), "Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design", Adv. Sci., 6(12), 1900128. https://doi.org/10.1002/advs.201900128.   DOI
95 Mou, B., Zhao, F., Qiao, Q., Wang, L., Li, H., He, B. and Hao, Z. (2019b), "Flexural behavior of beam to column joints with or without an overlying concrete slab", Eng. Struct., 199, 109616.   DOI
96 Liu, J., Wu, C., Wu, G. and Wang, X. (2015), "A novel differential search algorithm and applications for structure design", Appl. Math. Comput., 268, 246-269. https://doi.org/10.1016/j.amc.2015.06.036.   DOI
97 Kim, S.E., Vu, Q.V., Papazafeiropoulos, G., Kong, Z. and Truong, V.H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193.   DOI
98 Mousav, A.A., Zhang, C., Masri, S.F. and Gholipour, G. (2020), "Structural damage localization and quantification based on a ceemdan hilbert transform neural network approach: A model steel truss bridge case study", Sensors, 20(5), 1271.   DOI
99 Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z. and Guan, Z. (2019), "A deep learning approach for multi-frame in-loop filter of HEVC", IEEE T. Image Process., 28(11), 5663-5678. https://doi.org/10.1109/TIP.2019.2921877   DOI
100 Li, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environ. Sci. Pollution Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.   DOI
101 Liu, Y., Yang, C. and Sun, Q. (2020b), "Thresholds based image extraction schemes in big data environment in intelligent traffic management", IEEE T. Intell. Transp. Systems.
102 Luat, N.V., Shin, J. and Lee, K. (2020), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01115-7.   DOI
103 Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q. and Cai, K. (2020a), "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources", Agricultural Water Management, 240, https://doi.org/10.1016/j.agwat.2020.106303.   DOI
104 Abedini, M., Mutalib, A.A,. Zhang, C,. Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M.H. (2020a), "Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads", Front. Struct. Civil Eng., 14(2), 532-553. https://doi.org/10.1007/s11709-020-0604-9.   DOI
105 Abedini, M. and Zhang, C. (2020), "Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review", Archiv. Comput. Method. Eng., https://doi.org/10.1007/s11831-020-09483-5   DOI
106 Abedini, M. and Zhang, C. (2021), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, https://doi.org/10.1016/j.compstruct.2020.113473.   DOI
107 Chandwani, V., Agrawal, V. and Nagar, R. (2015), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks", Exp. Syst. Appl., 42(2), 885-893. https://doi.org/10.1016/j.eswa.2014.08.048.   DOI
108 Chen, F., Zhong, Y., Gao, X., Jin, Z., Wang, E., Zhu, F., Shao, X. and He, X .(2021), "Non-uniform Model of Relationship Between Surface Strain and Rust Expansion Force of Reinforced Concrete".
109 Chen, H., Qiao, H., Xu, L., Feng, Q. and Cai, K. (2019), "A Fuzzy Optimization Strategy for the Implementation of RBF LSSVR Model in Vis-NIR Analysis of Pomelo Maturity", IEEE T. Ind. Inform., 15(11), 5971-5979. https://doi.org/10.1109/TII.2019.2933582.   DOI
110 Chen, Y., He, L., Guan, Y., Lu, H. and Li, J. (2017), "Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales", Energ. Convers. Manage., 134, 382-398. https://doi.org/10.1016/j.enconman.2016.12.019.   DOI
111 Chen, Z., Wang, J., Ma, K., Huang, X. and Wang, T. (2020b), "Fuzzy adaptive two-bits-triggered control for nonlinear uncertain system with input saturation and output constraint", Int. J. Adaptive Control Signal Process., 34(4), 543-559.   DOI
112 DeRousseau, M., Kasprzyk, J. and Srubar III, W. (2018), "Computational design optimization of concrete mixtures: A review", Cement Concrete Res., 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007.   DOI
113 Li, C., Sun, L., Xu, Z., Wu, X., Liang, T. and Shi, W. (2020), "Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring". Int. J. Struct. Stab. Dynam., 20(6), https://doi.org/10.1142/S0219455420400118.   DOI
114 Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E. (2020b), "Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column", Structures, 456-466. https://doi.org/10.1016/j.istruc.2020.08.084.   DOI
115 Agnihotri, S., Atre, A. and Verma, H. (2000), "Equilibrium Optimizer for Solving Economic Dispatch Problem", Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON) 1-5.
116 Alam, Z., Zhang, C. and Samali, B. (2020a), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec. Build., 29(12), https://doi.org/10.1002/tal.1750.   DOI