• Title/Summary/Keyword: NMR assignment

Search Result 95, Processing Time 0.033 seconds

Isolation of Dineolignans, Saucernetin-7 and -8, with Nitric Oxide Inhibitory Activity and NMR assignment from Saururus chinensis

  • Lee, Kyung-Tae;Jung, Hyun-Ju;Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.655-659
    • /
    • 2006
  • Two dineolignans (1,2) with nitric oxide inhibitory activities were isolated from Saururus chinensis (Saururaceae) using silica gel column chromatography. Although the structures, saucernetin-7 (1) and -8 (2), have been already reported, NMR assignment of the two compounds was completed aided by 2D-NMR spectroscopy including $^1H-^1H$ COSY, $^1H-^{13}C$ COSY, HMBC and NOESY NMR spectra. Compounds 1 and 2 exhibited significant nitride oxide inhibitory activity in LPS-induced RAW 264.7 cells with $IC_{50}$ values of $11.3{\mu}M\;and\;7.1{\mu}M$, respectively.

Assignment of the Redox Potentials of Cytochrome c₃of Desulfovibrio vulgaris Hildenborough by ¹H NMR

  • 박장수;강신원;신정휴
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.968-971
    • /
    • 1995
  • The heme assignment of the 1H NMR spectrum of cytochrome c3 of Desulfovibrio vulgaris Hildenborough within the X-ray structure were fully cross established according to their redox potential. The major reduction of the heme turned out to take place in the order of hemes Ⅳ,Ⅰ,Ⅱ and Ⅲ(the heme numbers indicating the order of bonding to the primary sequence). This assignment can provide the physicochemical basis for the elucidation of electron transfer of this protein.

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31

  • Kim, Jihong;Choi, Dongwook;Park, Chankyu;Ryu, Kyoung-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.112-118
    • /
    • 2015
  • Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.

Complete Assignment of $^{1}H$ and $^{13}C$-NMR Signals for (20S) and (20R)-Protopanaxadiol by 2D-NMR Techniques (2D-NMR 기법을 이용한 (20S)와 (20R)-Protopanaxadiol의 $^{1}H$- 및 $^{13}C$-NMR 완전 동정)

  • 백남인;김동선
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.45-50
    • /
    • 1995
  • (20S)- and (20R)-protopanaxadiol were prepared from crude ginseng saponin by chemical treatment. The $^{1}H$- and $^{13}C$-NMR signals of these compounds were fully assigned by various NMR techniques such as DEPT, 1H-1H COSY, HMQC, HMBC and NOESY.

  • PDF

Heteronuclear NMR studies on 44 kDa dimer, syndesmos

  • Kim, Heeyoun;Lee, Inhwan;Han, Jeongmin;Cheong, Hae-kap;Kim, Eunhee;Lee, Weontae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.83-87
    • /
    • 2015
  • Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain ($Syn4^{cyto}$) in focal contacts, interacts with various cell adhesion adaptor proteins including $Syn4^{cyto}$ to control cell signaling. Syndesmos consists of 211 amino acids and it exists as a dimer (44kDa) in solution. Recently, we have determined the structure of syndesmos by x-ray crystallography, however, dynamics related to syndecan binding still remain elusive. In this report, we performed NMR experiments to acquire biochemical and structural information of syndesmos. Based on a series of three-dimensional triple resonance experiments on a $^{13}C/^{15}N/^2H$ labeled protein, NMR spectra were obtained with well dispersed and homogeneous NMR data. We present the sequence specific backbone assignment of syndesmos and assigned NMR data with combination structural information can be directly used for the studies on interaction with $Syn4^{cyto}$ and other binding molecules.

Purification and Backbone Assignment of the Hypothetical Protein MTH1821 from Methanobacterium Thermoautotrophicum H

  • Kwak, Soo-Young;Lee, Woong-Hee;Shin, Joon;Ko, Sung-Geon;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 2007
  • MTH1821 (UniProtKB/TrEMBL ID O27849) is a 96-residue hypothetical protein from the open reading frame of Methanobacterium thermoautotrophicum H one of the target organisms of structural genomics pilot project. Proteins which contain conserved sequence compared with MTH1821 have not been discovered yet and the functional and structural information for MTH1821 is not available. Here, we present the sequence-specific backbone resonance using multidimensional heteronuc1ear NMR spectroscopy and propose the secondary structure using GetSBY software. The backbone resonances of N, HN, $C_{\alpha}$, $C_{\beta}$, CO and $H_{\alpha}$ which are necessary for a prediction of secondary structure by GetSBY were assigned about 98% (557/568). The secondary structure of MTH1821 confirmed that it is comprised of four strand regions and two helical regions. This report will provide a valuable resource for the calculation solution structure of MTH1821 and for the other hypothetical protein that is targeted for structural-based functional discovery.

  • PDF

Backbone NMR chemical shift assignment of transthyretin

  • Kim, Bokyung;Kim, Jin Hae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.1
    • /
    • pp.8-11
    • /
    • 2021
  • Transthyretin (TTR) is an important transporter protein for thyroxine (T4) and a holo-retinol protein in human. In its native state, TTR forms a tetrameric complex to construct the hydrophobic binding pocket for T4. On the other hand, this protein is also infamous for its amyloidogenic propensity, which causes various human diseases, such as senile systemic amyloidosis and familial amyloid polyneuropathy/cardiomyopathy. In this work, to investigate various structural features of TTR with solution-state nuclear magnetic resonance (NMR) spectroscopy, we conducted backbone NMR signal assignments. Except the N-terminal two residues and prolines, backbone 1H-15N signals of all residues were successfully assigned with additional chemical shift information of 13CO, 13Cα, and 13Cβ for most residues. The chemical shift information reported here will become an important basis for subsequent structural and functional studies of TTR.