Browse > Article
http://dx.doi.org/10.6564/JKMRS.2015.19.2.083

Heteronuclear NMR studies on 44 kDa dimer, syndesmos  

Kim, Heeyoun (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,)
Lee, Inhwan (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,)
Han, Jeongmin (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,)
Cheong, Hae-kap (Magnetic Resonance Team,Korea Basic Science Institute (KBSI))
Kim, Eunhee (Magnetic Resonance Team,Korea Basic Science Institute (KBSI))
Lee, Weontae (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University,)
Publication Information
Journal of the Korean Magnetic Resonance Society / v.19, no.2, 2015 , pp. 83-87 More about this Journal
Abstract
Syndesmos, which is co-localized with syndecan-4 cytoplasmic domain ($Syn4^{cyto}$) in focal contacts, interacts with various cell adhesion adaptor proteins including $Syn4^{cyto}$ to control cell signaling. Syndesmos consists of 211 amino acids and it exists as a dimer (44kDa) in solution. Recently, we have determined the structure of syndesmos by x-ray crystallography, however, dynamics related to syndecan binding still remain elusive. In this report, we performed NMR experiments to acquire biochemical and structural information of syndesmos. Based on a series of three-dimensional triple resonance experiments on a $^{13}C/^{15}N/^2H$ labeled protein, NMR spectra were obtained with well dispersed and homogeneous NMR data. We present the sequence specific backbone assignment of syndesmos and assigned NMR data with combination structural information can be directly used for the studies on interaction with $Syn4^{cyto}$ and other binding molecules.
Keywords
syndesmos; $Syn4^{cyto}$; NMR spectroscopy; triple resonance; backbone NMR assignment;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. G. McLennan, Cell Mol. Life Sci. 63, 123 (2006)   DOI
2 M. J. Bessman, D. N. Frick, and S. F. O'Handley, J. Biol. Chem. 271, 25059 (1996)   DOI
3 M. J. Taylor and B. A. Peculis, Nucleic Acids Res. 36, 6021 (2008)   DOI
4 A. S. Mildvan. Z. Xia, H. F. Azurmendi, V. Sarawat, P. M. Legler, M. A. Massiah, S. B. Gabelli, M. A. Bianchet, L.W. Kang, and L. M. Amzel, Arch Biochem. Biophys. 433, 129 (2005)   DOI
5 P. C. Baciu, S. Saoncella, S. H. Lee, F. Denhez, D. Leuthardt, and P. F. Goetinck, Cell Sci. 113, 315 (2000)
6 F. Denhez, S. A. Wilcox-Adelman, P. C.Baciu, S. Saoncella, S. Lee, B. French, W. Neveu, and P. F. Goetinck, J. Biol. Chem. 277, 12270 (2002)   DOI
7 H. Kim, J. Yoo, I. Lee, Y. J. Kang, H. S.Cho, and W. Lee, Biochem. Biophys. Res. Commun. 463, 762 (2015)   DOI
8 B. K. Koo, Y. S. Jung, J. Shin, I. Han, E. Mortier, P. Zimmermann, J. R. Whiteford, J. R. Couchman, E. S. Oh, and W. Lee, J. Mol. Biol. 355, 651 (2006)   DOI
9 A. Woods and J. R. Couchman, Curr. Opin. Cell Biol. 13, 578 (2001)   DOI
10 H. Kim, E. Hong, and W. Lee, JKMRS 15, 115 (2011)
11 K-O Lee and J-Y Suh, JKMRS 19, 172 (2014)
12 S. Park, JKMRS 18, 47 (2014)
13 R. Otten, B. Chu, K. D. Krewulak, H. J. Vogel, and F. A. Mulder, J. Am. Chem. Soc. 132, 2952 (2010)   DOI
14 M. Sattler and S. W. Fesik, Structure. 15, 1245 (1996)
15 C. Ritter, T. Luhrs, W. Kwiatkowski, R. Riek, J. Biomol. NMR. 28, 289 (2004)   DOI
16 A. Krejcirikova and V. Tugarinov, J. Biomol. NMR. 54, 135 (2012)   DOI
17 K. Pervushin, D. Braun ,C. Fernandez , and K. Wuthrich, J. Biomol. NMR. 17, 195 (2000)   DOI