• 제목/요약/키워드: NMR Analysis

검색결과 1,407건 처리시간 0.026초

Practical Guide to NMR-based Metabolomics - III : NMR Spectrum Processing and Multivariate Analysis

  • Jung, Young-Sang
    • 한국자기공명학회논문지
    • /
    • 제22권3호
    • /
    • pp.46-53
    • /
    • 2018
  • NMR-based metabolomics needs various knowledge to elucidate metabolic perturbation such as NMR experiments, NMR spectrum processing, raw data processing, metabolite identification, statistical analysis, and metabolic pathway analysis regarding technical aspects. Among them, some concepts of raw data processing and multivariate analysis are not easy to understand but are important to correctly interpret metabolic profile. This article introduces NMR spectrum processing, raw data processing, and multivariate analysis.

Purity assessment using quantitative NMR: establishment of SI traceability in organic analysis

  • Choi, Kihwan
    • 한국자기공명학회논문지
    • /
    • 제24권1호
    • /
    • pp.30-37
    • /
    • 2020
  • Quantitative nuclear magnetic resonance (qNMR) has been gaining attention as a purity assessment method. In particular, qNMR is recognized as the primary method to realize the Internal System of Units (SI) in organic analysis. The capability of quantitative analysis is recognized as the beginning of NMR development. NMR signals are proportional to the number of nuclei and qNMR has been used in various fields, such as metabolomics and food and pharmaceutical analysis. However, careful sample preparation and thorough optimization of measurement parameters are required to obtain accurate and reliable results. In this review, quantitative methods used in qNMR are discussed, and the important factors to be considered also introduced. The recent development of qNMR techniques including combination with chromatography and, multidimensional NMR are also presented.

LC/MS와 1H NMR을 이용한 화장품속의 글리세린 비교분석 (Comparative analysis of glycerin in cosmetics by LC/MS and 1H NMR)

  • 박교범;박찬조;이석근
    • 분석과학
    • /
    • 제20권5호
    • /
    • pp.400-405
    • /
    • 2007
  • 액체크로마토그래피/질량분석법(LC/MS) 및 핵자기공명분광분석법 $^1H(NMR)$을 이용하여 화장품에 들어있는 글리세린을 동시 비교분석하였다. 화장품 시료를 물에 용해시키고 수산화나트륨을 첨가하여 시료용액을 강알칼리 상태로 유지시킨 후, 시료용액 중의 글리세린을 benzoyl chloride로 유도체화 반응 시키고 유도체화된 글리세린을 pentane으로 추출하여 LC/MS로 정량분석 하였다. $^1H$ NMR 분석은 시료를 전처리 없이 $D_2O$ 용매에 직접 용해시키고, 글리세린을 ERETIC(Electronic REference To access In vivo Concentrations) 방법을 이용하여 $^1H$ NMR로 직접 정량분석 하였다. LC/MS 및 NMR 분석결과 LC/MS의 검량선은 $0.1-10{\mu}g/mL$ 농도범위에서 $r^2=0.9991$ 이었고 $^1H$ NMR의 검량선은 $25-500{\mu}g/mL$ 농도범위에서 $r^2=1$의 상관계수를 갖는 좋은 직선성을 얻었다.

Visipaque 조영제에서 1H-NMR Spectroscopy와 1H-NMR Spectrum 예측 프로그램의 화학적 구조 비교분석 (Comparative Analysis of The Chemical Structure of 1H-NMR Spectroscopy and 1H-NMR Spectrum Prediction Program in Visipaque Contrast Agent)

  • 한범희
    • 한국방사선학회논문지
    • /
    • 제18권5호
    • /
    • pp.499-508
    • /
    • 2024
  • Visipaque 조영제 대상으로 1H-NMR Spectrometer를 이용한 스펙트럼 분석과 1H-NMR 스펙트럼 예측 프로그램을 이용하여 분석한 결과, 2.18 ppm영역과 2.17 ppm영역에서 분자구조 위치는 서로 상이하게 나타났다. 2.25 ppm영역과 2.34 ppm영역은 Spectrometer를 이용한 스펙트럼 분석에서는 나타나지 않았고, 예측 프로그램을 이용한 분석에서는 나타났다. 또한 2.58 ppm영역은 Spectrometer를 이용한 스펙트럼 분석에서는 나타났고, 예측 프로그램을 이용하여 분석에서는 나타나지 않았다. 4.42 ppm영역은 Spectrometer를 이용한 스펙트럼 분석에서는 나타나지 않았고, 예측 프로그램을 이용하여 분석에서는 나타났다. 그리고 5.61 ppm영역은 Spectrometer를 이용한 스펙트럼 분석에서는 나타났고, 예측 프로그램을 이용하여 분석에서는 나타나지 않았다. 이를 바탕으로 예측 프로그램을 이용하여 참고로 분석한다면 좀 더 명확한 화학구조를 파악할 수 있을 것으로 사료된다.

The Role of NMR in the Field of Quantitative Analysis

  • Lee, Sueg-Geun
    • 한국자기공명학회논문지
    • /
    • 제20권3호
    • /
    • pp.87-94
    • /
    • 2016
  • Although NMR technique has been using in many areas of chemistry, its merit on quantitative analysis seems not to acknowledge greatly because of the many inferior intrinsic aspects, particularly its sensitivity. Recently, new NMR techniques, high-field NMR, and demands for cutting edge techniques of analysis, however, seem to change the role of NMR spectroscopy in this field. This review shows the application of NMR development in quantitative analysis and will discuss the basic idea, limitations, and pitfalls. Then it will show you several successful applications applied in quantitative analysis and you will see how useful and accurate method it is.

$^1H-NMR$을 이용한 한약재의 품질 평가 방법 확립;진피의 Hesperidin 정량분석 (Quantitative Analysis of Quality Control of Natural Medicine by $^1H-NMR$ Spectrometry-Quantitative Analysis of Hesperidin from Citrus unshiu)

  • 안은미;백미영
    • 대한본초학회지
    • /
    • 제23권3호
    • /
    • pp.27-32
    • /
    • 2008
  • Objectives : In this paper, we describe that $^1H-NMR$ spectroscopy may be superior to the conventional HPLC for the quantitative analysis of hesperidin from Citrus unshiu. Methods : $^1H-NMR$ spectra (400 MHz) were recorded in $DMSO-d_6$ using a Varian UNITY Inova AS 400 FT NMR spectrometer. One hundred milligram of powdered Citrus unshiu was weighed out and mixed with 1 ml of $DMSO-d_6$ with sonication for 30 min (room temperature). The extracts were filtrated through a 0.45 ${\mu}m$ PVDF filter and 0.5 ml of filtrated extract used for quantitative $^1H-NMR$ measurement (added 1 mg of dimethyl terephthalate as internal standard). The quantity of hesperidin was calculated by the ratio of the intensity of the compound to the known amount of internal standard. For HPLC analysis, the half gram of plant material was extracted with 60 ml of MeOH for 2 hours. The extracts were made 100 ml volume and analyzed by a Waters HPLC system using a YMC ODS column. The total flow rate was 1.0 ml/min with a sample volume 10 ${\mu}l$ and UV detection at 280nm. Results : The contents of hesperidin in Citrus unshiu was determined $5.33{\pm}0.06$% in the quantitative $^1H-NMR$ method and $5.15{\pm}0.12%$ in HPLC method. Using the quantitative $^1H-NMR$ the contents of hesperidin can be determined in much shorter time than the conventional HPLC measurements. Conclusions : From those results, the advantages of quantitative $^1H-NMR$ analysis are that can be analyzed to identify and quantify, and no reference compounds required for calibration curve. Besides, it allows rapid and simple quantification for hesperidin with an analysis time for only 10 min without any pre-purification steps.

  • PDF

XRF 및 NMR 법에 의한 윤활유 중의 인 함량 비교분석 연구 (Determination of phosphorous in lubricating oil by XRF and NMR methods)

  • 임헌성;한기정;이석근
    • 분석과학
    • /
    • 제18권2호
    • /
    • pp.168-172
    • /
    • 2005
  • A comparison study of XRF and $^{31}P$-NMR method for the analysis of phosphorous in lubricating oil has been described. Pure oil and water were used for the observation of matrices effect variation by different analytical methods. Quantitative analysis was carried out by XRF and $^{31}P$-NMR using real samples. Significant difference is observed from the slopes on the calibration curves by the XRF due to the matrices (water: 124.0, oil: 276.6). While the result obtained from XRF showed a large matrix effect, the slopes obtained from $^{31}P$-NMR results of two different matrices, however, are in good agreement ranged of ${\pm}9%$ (water: 4.9, oil: 5.3).

Recent NMR developments for pharmaceutical research

  • Lee, Kwanghwan
    • 한국자기공명학회논문지
    • /
    • 제20권1호
    • /
    • pp.27-35
    • /
    • 2016
  • NMR spectrometer has been regarded as essential tool for structure elucidation in variable scientific field as like organic synthesis, natural product and macro protein research. Also NMR can be applied for defining dynamic behavior like ligand and receptor binding. One of advantage of research with NMR is that to be great confident to confirm structure and the measured sample could be recovered. Nevertheless NMR also has a weak points than other spectroscopic methods that require a lot of time for interpreting acquired spectrum and running time due to low sensitivity. For last two decade Bruker has developed hardware and software solution for overcome those weak points. In order to overcome low sensitivity Bruker introduced Cryo and Micro diameter probe head technology. And researcher can reduce the time for routine spectrum processing and interpretation works due to lots of introductions in software solutions for quantification, identification and statistics analysis. With four examples, this article describing those new hardware and software solutions in field of recent pharmaceutical research as follows. - New Horizons for NMR in the Biopharmaceutical Industry - The development and application of solid-state NMR spectroscopy (SSNMR) in pharmaceutical analysis - Assisted NMR Data Interpretation in Synthetic Chemistry - Complete Analysis of New Psychoactive Substances Using NMR.

Quantitative NMR Analysis of PTMEG compounds

  • Kim, Gilhoon;Won, Hoshik
    • 한국자기공명학회논문지
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2016
  • PTMEG(Polytetramethylene ether glycol) is a polymer compound widely used as a wide range of applications in the textile industry. PTMEG substance carrying various 1,800~2,000 molecular weight are mainly used as the raw material of the spandex production. Molecular weight and degree of polymerization value for 4 different PTMEG samples under pilot plant scale synthetic process were determined by a new quantitative NMR method. In NMR experiments, p-toluenesulfonic acid(TSOH) was used for external standard material of PTMEG quantitative analysis. were measuring The concentration of the primary standard TSOH was measured by UV/Vis spectroscopy. By using NMR peak assignments and the integral values of designated proton NMR peaks, We were able to measure the % composition of the synthetic PTMEG polymers, concentrations, molecular weight and the degree of polymerization that show the synthetic process of each manufacturing pilot plant. By utilizing a newly developed quantitative NMR method were able to obtain the molecular weight of PTMEG samples within 0.08 error % range.

Identification of Xanthium Sibiricum Components using LC-SPE-NMR-MS Hyphenated System

  • Sohn, Ji Soo;Jung, Youngae;Han, Ji Soo;Hwang, Geum-Sook
    • 한국자기공명학회논문지
    • /
    • 제22권2호
    • /
    • pp.26-33
    • /
    • 2018
  • Xanthium sibiricum is used as a traditional folk medicine for the treatment of cancer, fever, headache, nasal sinusitis, and skin pruritus. This study aimed to identify components from Xanthium sibiricum extracts using an SPE-800MHz NMR-MS hyphenated system. The simultaneous acquisition of MS and NMR spectra from the same chromatographic peaks significantly increases the depth of information acquired for the compound and allows the elucidation of structures that would not be possible using MS or NMR data alone. LC -NMR analysis was conducted using a HPLC separation system coupled to 800 MHz spectrometer equipped with a cryoprobe, and a SPE unit was used to automatically trap chromatographic peaks using a HPLC pump. LC-MS analysis was conducted with a Q-TOF MS instrument using ESI ionization in the negative ion mode. Using the hyphenated analysis, several secondary metabolites were identified, such as 3',5'-O-dicaffeoylquinic acid, 1',5'-O-dicaffeoyl- quinic acid, and ethyl caffeate. These results demonstrate that the SPE-800MHz NMR-MS hyphenated system can be used to identify metabolites within natural products that have complex mixtures.