• Title/Summary/Keyword: NMDA-receptor activation

Search Result 43, Processing Time 0.026 seconds

Effects of Saenghyetang on Learning and Memory Performances in Mice (생혜탕(生慧湯)이 흰쥐의 학습(學習)과 기억(記憶)에 미치는 영향(影響))

  • Yu Geum-Ryoung;Chang Gyu-Tae;Kim Jang-Hyeon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.77-104
    • /
    • 2001
  • The effects of the oriental herbal medicine Saenghyetang(SHT, 生慧湯), which consists of Rehmanniae Radix (熟地黃 九蒸: was made by 9th steam) 40g, Corni Fructus(山茱黃) 16g, Polygalae Radix(遠志) 8g, Zizyphi Spinosae Semen(酸棗仁) 2g, Biotae Semen(柏子仁 去油: oil ingredient was removed) 20g, Poria Cocos(茯笭) 12g, Ginseng Radix(人蔘) 12g, Acori Graminei Rhizoma(石菖蒲) 2g, Sinapis Semen(白芥子) 8g, on learning ability and memory were investigated. Hot water extract(HWE) and ethanol extract(EE) from SHT were used for the studies. Learning ability and memory are related to modifications of synaptic strength among neurons that interactive. Enhanced synaptic coincidence detection leads to improved learning ability and memory. If the NMDA receptor, a synaptic coincidence detector, acts as a graded switch for memory formations, enhanced signal detection by NMDA receptors should enhance learning ability and memory. It was shown that NR2B was increased in the forebrains of oriental medicine-administrated mice, leading to enhanced activation of NMDA receptors and facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These HWE-SHT treated mice exhibited that superior ability in learning and memory when performing various behavioral tasks, showing that NR2B is enhanced by HWE-SHT treatment and also is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA receptor-dependent modifications, which were mediated in part by HWE administration, of synaptic efficacy, therefore, represent a mechanism for associative learning ability and memory. Results suggest that oriental medical enhancement of NR2B contributes to increase intelligence and memory in mammals On the other hand, to examine the effects of EE-SHT on the learning ability and memory in experimental mice, EE-SHT was tested on passive and active avoidance responses. The EE-SHT ameliorated the memory retrieval deficit induced by ethanol in mice, but not other memory impairments. EE-SHT(10, 20mg/100 g, p.o.) did not affect the passive avoidance responses of normal mice in the step through and step down tests, the conditioned and unconditioned avoidance responses of normal mice in the shuttle box, lever press performance tests and the ambulatory activity of normal mice in a normal condition. However, EE-SHT at 20 mg/kg significantly decrease the spontaneous motor activity during the shuttle box test, and also to extend the sleeping time induced by pentobarbital in mice. These results suggest that SHT has an ameliorating effect on memory retrieval impairments and a weak tranquilizing action.

  • PDF

Effect of Propofol on Ion Channels in Acutely Dissociated Dorsal Raphe Neuron of Sprague-Dawley Rats

  • Lee, Bong-Jae;Kwon, Moo-ll;Shin, Min-Chul;Kim, Youn-Jung;Kim, Chang-Ju;Kim, Soon-Ae;Kim, Ee-Hwa;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.189-197
    • /
    • 2001
  • To investigate propofol's effects on ionic currents induced by ${\gamma}-aminobutyric$ acid (GABA) and glycine as well as on those produced by the nicotinic acetylcholine- and glutamate-responsive channels, rat dorsal raphe neurons were acutely dissociated and the nystatin-perforated patch-clamp technique under voltage-clamp conditions was used to observe their responses to the administration of propofol. Propofol evoked ion currents in a dose-dependent manner, and propofol $(10^{-4}\;M)$ was used to elicit ion currents through the activation of $GABA_A,$ glycine, nicotinic acetylcholine and glutamate receptors. Propofol at a clinically relevant concentration $(10^{-5}\;M)$ potentiated $GABA_A-,$ glycine- and NMDA receptor-mediated currents. The potentiating action of propofol on $GABA_A-,$ glycine- and NMDA receptor-mediated responses involved neither opioid receptors nor G-proteins. Apparently, propofol modulates inhibitory and excitatory neurotransmitter-activated ion channels either by acting directly on the receptors or by potentiating the effects of the neurotransmitters, and this modulation appears to be responsible for the majority of the anaesthetic and/or adverse effects.

  • PDF

Mammalian Target of Rapamycin Signaling Pathways and Depression (Mammalian Target of Rapamycin 신호전달체계와 우울증)

  • Lee, Jung Goo;Seo, Mi Kyong;Park, Sung Woo;Kim, Young Hoon
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • Depression is a complicated psychiatric illness with severe consequences. Despite recent advanced achievements of molecular neurobiology, pathophysiology of depression has not been well elucidated. Among new findings of pathophysiology of depression, the possible fast antidepressant effect by N-methyl-D-asparate receptor antagonist, such as ketamine, is regarded as a promising treatment target of depression. Ketamine stimulates the mammalian target of rapamycin (mTOR) signaling pathway and activation of mTOR signaling pathway may be a key mechanism of the antidepressant effect of ketamine. Thus, this review describes the role of mTOR signaling in the pathophysiology of depression and developing a new treatment target of depression.

Study on White Ginseng Extract Preparation for Cognition Improvement (인지능 개선 효과 증진을 위한 백삼 추출물 조제 연구)

  • Lee, Seung Eun;Kim, Geum Sook;Lee, Dae Young;Kim, Hyung Don;Lee, Jae Won;Lee, Young Sup;Park, Chun Geun;Ahn, Young Sup
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.5
    • /
    • pp.375-385
    • /
    • 2016
  • Background: The study was conducted to elucidate the extraction conditions under which white ginseng has cognition-improving efficacy. Methods and Results: Extracts from white ginseng under different solvent and temperature conditions were analyzed for ginsenoside content and inhibitory effect on N-methyl-D-aspartate (NMDA) receptor and acetylcholinesterase. The total ginsenoside contents and amounts of ginsenoside Rb1 plus ginsenoside Rg1 from the 1st extracts (prepared with EtOH/$H_2O$ as solvent) were higher than those from the 2nd extracts (extracted with $H_2O$ after the 1st EtOH/$H_2O$ extraction). The contents in the 1st and 2nd extracts produced at $80^{\circ}C$ were also higher than those obtained at $50^{\circ}C$. Samples from the 1st extraction at $80^{\circ}C$ indicated higher inhibitory activities on NMDA receptors-whose excessive activation is thought to mediate the calcium-dependent neurotoxicity associated with several neurodegenerative diseases-than those from the 2nd extraction. Among the samples prepared at varying temperatures, the extract prepared at $50^{\circ}C$ showed the highest suppression activity on NMDA receptors. Note, however, that the extracts from the 2nd extraction at $50^{\circ}C$ inhibited acetylcholinesterase-whose inhibition could be a therapeutic strategy for neurodegenerative diseases with cognitive deficits and memory malfunction-more effectively than those from the 1st extraction. Conclusions: To enhance the cognition-improving activity of white ginseng extract, it is suggested that the extracts be utilized after being combined the 1st extracts (made with EtOH/$H_2O$ solvent) and the 2nd extracts (prepared with $H_2O$) at low temperature.

Developmental Switch of the Serotonergic Role in the Induction of Synaptic Long-term Potentiation in the Rat Visual Cortex

  • Park, Sung-Won;Jang, Hyun-Jong;Cho, Kwang-Hyun;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Synaptic long-term potentiation (LTP) and long-term depression (LTD) have been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. Serotonin (5-hydroxytryptamine, 5-HT) inhibits the induction of LTP and LTD during the critical period of the rat visual cortex (postnatal 3~5 weeks). However, in adult rats, the increase in 5-HT level in the brain by the administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reinstates ocular dominance plasticity and LTP in the visual cortex. Here, we investigated the effect of 5-HT on the induction of LTP in the visual cortex obtained from 3- to 10-week-old rats. Field potentials in layer 2/3, evoked by the stimulation of underlying layer 4, was potentiated by theta-burst stimulation (TBS) in 3- and 5-weekold rats, then declined to the baseline level with aging to 10 weeks. Whereas 5-HT inhibited the induction of LTP in 5-week-old rats, it reinstated the induction of N-methyl-D-aspartate receptor (NMDA)-dependent LTP in 8- and 10-week-old rats. Moreover, the selective SSRI citalopram reinstated LTP. The potentiating effect of 5-HT at 8 weeks of age was mediated by the activation of 5-$HT_2$ receptors, but not by the activation of either 5-$HT_{1A}$ or 5-$HT_3$ receptors. These results suggested that the effect of 5-HT on the induction of LTP switches from inhibitory in young rats to facilitatory in adult rats.

The Memory-Enhancing Effects of Liquiritigenin by Activation of NMDA Receptors and the CREB Signaling Pathway in Mice

  • Ko, Yong-Hyun;Kwon, Seung-Hwan;Hwang, Ji-Young;Kim, Kyung-In;Seo, Jee-Yeon;Nguyen, Thi-Lien;Lee, Seok-Yong;Kim, Hyoung-Chun;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.109-114
    • /
    • 2018
  • Liquiritigenin (LQ) is a flavonoid that can be isolated from Glycyrrhiza radix. It is frequently used as a tranditional oriental medicine herbal treatment for swelling and injury and for detoxification. However, the effects of LQ on cognitive function have not been fully explored. In this study, we evaluated the memory-enhancing effects of LQ and the underlying mechanisms with a focus on the N-methyl-D-aspartic acid receptor (NMDAR) in mice. Learning and memory ability were evaluated with the Y-maze and passive avoidance tests following administration of LQ. In addition, the expression of NMDAR subunits 1, 2A, and 2B; postsynaptic density-95 (PSD-95); phosphorylation of $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII); phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2); and phosphorylation of cAMP response element binding (CREB) proteins were examined by Western blot. In vivo, we found that treatment with LQ significantly improved memory performance in both behavioral tests. In vitro, LQ significantly increased NMDARs in the hippocampus. Furthermore, LQ significantly increased PSD-95 expression as well as CaMKII, ERK, and CREB phosphorylation in the hippocampus. Taken together, our results suggest that LQ has cognition enhancing activities and that these effects are mediated, in part, by activation of the NMDAR and CREB signaling pathways.

Modulation of Bujaijung-tang and Bojungikgi-tang on Inhibitory and Excitatory Neurotransmitters Activated Ion Channels (부자이중탕과 보중익기탕의 억제성 및 흥분성 신경전달 물질에 의하여 활성화되는 이온통로 조절작용)

  • Lee, Hye-Jung;Seo, Jung-Chul;Lee, Jae-Dong;Kim, Ee-Hwa;Lee, Choong-Yeol;Chung, Joo-Ho;Shin, Min-Chul;Kim, Hyun-Bae;Kim, Youn-Jung;Kim, Chang-Ju
    • Journal of Acupuncture Research
    • /
    • v.17 no.4
    • /
    • pp.5-17
    • /
    • 2000
  • To research the characteristics of ion currents induced by Bujaijung-tang and Bojungikgi-tang, nystatin-perforated patch clamp technique under voltage-c(amp condition was used. Periaqueductal gray neuron was dissociated from Sprauge-Dawley rat, 10-15 days old. Cytotoxicity of Bujaijung-tang and Bojungikgi-tang showed incubation time and concentration dependent manner. Ion current activated by Bujaijung-tang and Bojungikgi-tang were inhibited by bicuculline and strychnine and CNQX. It can be suggested that Bujaijung-tang and Bojungikgi-tang modulate inhibitory and excitatory neurotransmitters-, GABA, glycine and non-NMDA, acticvated ion channels. Modulatory effect of Bujaijung-tang and Bojungikgi-tang was more greater in inhibitory neurotransmitters. Low concentration of Bujaijung-tang which dose not elicit ion current itself, activated GABA and glycine induced chloride currents. In this study, we can found that the activation of Bujaijung-tang and Bojungikgi-tang on non-NMDA subtypes of glutamate receptor is its major action mechanism and can be used as very effective Herb treatment on Myasthenia gravis patient.

  • PDF

Memory-improving effect of formulation-MSS by activation of hippocampal MAPK/ERK signaling pathway in rats

  • Kim, Sang-Won;Ha, Na-Young;Kim, Kyung-In;Park, Jin-Kyu;Lee, Yong-Heun
    • BMB Reports
    • /
    • v.41 no.3
    • /
    • pp.242-247
    • /
    • 2008
  • MSS, a comprising mixture of maesil (Prunus mume Sieb. et Zucc) concentrate, disodium succinate and Span80 (3.6 : 4.6 : 1 ratio) showed a significant improvement of memory when daily administered (460 mg/kg day, p.o.) into the normal rats for 3 weeks. During the spatial learning of 4 days in Morris water maze test, both working memory and short-term working memory index were significantly increased when compared to untreated controls. We investigated a molecular signal transduction mechanism of MSS on the behaviors of spatial learning and memory. MSS treatment increased hippocampal mRNA levels of NR2B and TrkB without changes of NR1, NR2A, ERK1, ERK2 and CREB. However, the protein levels of pERK/ERK and pCREB/CREB were all significantly increased to $1.5{\pm}0.17$ times. These results suggest that the improving effect of spatial memory for MSS is linked to MAPK/ERK signaling pathway that ends up in the phosphorylation of CREB through TrkB and/or NR2B of NMDA receptor.

MeBib Suppressed Methamphetamine Self-Administration Response via Inhibition of BDNF/ERK/CREB Signal Pathway in the Hippocampus

  • Kim, Buyun;Jha, Sonam;Seo, Ji Hae;Jeong, Chul-Ho;Lee, Sooyeun;Lee, Sangkil;Seo, Young Ho;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.519-526
    • /
    • 2020
  • Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.

Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

  • Jeon, Se Jin;Kim, Boseong;Ryu, Byeol;Kim, Eunji;Lee, Sunhee;Jang, Dae Sik;Ryu, Jong Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.249-258
    • /
    • 2017
  • To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-${\zeta}$ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-${\zeta}$ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems.