Mammalian Target of Rapamycin Signaling Pathways and Depression

Mammalian Target of Rapamycin 신호전달체계와 우울증

  • Lee, Jung Goo (Department of Psychiatry, Haeundae Paik Hospital and College of Medicine, Inje University) ;
  • Seo, Mi Kyong (Paik Institute for Clinical Research, Inje University College of Medicine) ;
  • Park, Sung Woo (Paik Institute for Clinical Research, Inje University College of Medicine) ;
  • Kim, Young Hoon (Department of Psychiatry, Haeundae Paik Hospital and College of Medicine, Inje University)
  • 이정구 (인제대학교 의과대학 해운대백병원 정신건강의학교실) ;
  • 서미경 (인제대학교 의과대학 백인제기념임상의학연구소 신경과학연구부) ;
  • 박성우 (인제대학교 의과대학 백인제기념임상의학연구소 신경과학연구부) ;
  • 김영훈 (인제대학교 의과대학 해운대백병원 정신건강의학교실)
  • Received : 2016.01.25
  • Accepted : 2016.02.11
  • Published : 2016.02.29

Abstract

Depression is a complicated psychiatric illness with severe consequences. Despite recent advanced achievements of molecular neurobiology, pathophysiology of depression has not been well elucidated. Among new findings of pathophysiology of depression, the possible fast antidepressant effect by N-methyl-D-asparate receptor antagonist, such as ketamine, is regarded as a promising treatment target of depression. Ketamine stimulates the mammalian target of rapamycin (mTOR) signaling pathway and activation of mTOR signaling pathway may be a key mechanism of the antidepressant effect of ketamine. Thus, this review describes the role of mTOR signaling in the pathophysiology of depression and developing a new treatment target of depression.

Keywords

References

  1. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002;34:13-25. https://doi.org/10.1016/S0896-6273(02)00653-0
  2. Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001;11:240-249. https://doi.org/10.1016/S0959-4388(00)00203-8
  3. Lopez-Leon S, Janssens AC, Gonzalez-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2008;13:772-785. https://doi.org/10.1038/sj.mp.4002088
  4. Mill J, Petronis A. Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 2007;12:799-814. https://doi.org/10.1038/sj.mp.4001992
  5. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006;63:856-864. https://doi.org/10.1001/archpsyc.63.8.856
  6. Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:140-144. https://doi.org/10.1016/j.pnpbp.2007.07.027
  7. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010;329:959-964. https://doi.org/10.1126/science.1190287
  8. Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999;46:1181-1191. https://doi.org/10.1016/S0006-3223(99)00177-8
  9. Pilar-Cuellar F, Vidal R, Diaz A, Castro E, dos Anjos S, Vargas V, et al. Signaling pathways involved in antidepressant-induced cell proliferation and synaptic plasticity. Curr Pharm Des 2014;20:3776-3794. https://doi.org/10.2174/13816128113196660736
  10. Hill MN, Hellemans KG, Verma P, Gorzalka BB, Weinberg J. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev 2012;36:2085-2117. https://doi.org/10.1016/j.neubiorev.2012.07.001
  11. Zhu WL, Wang SJ, Liu MM, Shi HS, Zhang RX, Liu JF, et al. Glycine site N-methyl-D-aspartate receptor antagonist 7-CTKA produces rapid antidepressant-like effects in male rats. J Psychiatry Neurosci 2013;38:306-316. https://doi.org/10.1503/jpn.120228
  12. Chandran A, Iyo AH, Jernigan CS, Legutko B, Austin MC, Karolewicz B. Reduced phosphorylation of the mTOR signaling pathway components in the amygdala of rats exposed to chronic stress. Prog Neuropsychopharmacol Biol Psychiatry 2013;40:240-245. https://doi.org/10.1016/j.pnpbp.2012.08.001
  13. Orlovsky MA, Dosenko VE, Spiga F, Skibo GG, Lightman SL. Hippocampus remodeling by chronic stress accompanied by GR, proteasome and caspase-3 overexpression. Brain Res 2014;1593:83-94. https://doi.org/10.1016/j.brainres.2014.09.059
  14. Feng P, Huang C. Phospholipase D-mTOR signaling is compromised in a rat model of depression. J Psychiatr Res 2013;47:579-585. https://doi.org/10.1016/j.jpsychires.2013.01.006
  15. Dwyer JM, Duman RS. Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry 2013;73:1189-1198. https://doi.org/10.1016/j.biopsych.2012.11.011
  16. Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ. Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci 2013;118:3-8. https://doi.org/10.3109/03009734.2012.724118
  17. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ. Ketamine-induced antidepressant effects are associated with AMPA receptorsmediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur Psychiatry 2014;29:419-423. https://doi.org/10.1016/j.eurpsy.2013.10.005
  18. Banko JL, Merhav M, Stern E, Sonenberg N, Rosenblum K, Klann E. Behavioral alterations in mice lacking the translation repressor 4EBP2. Neurobiol Learn Mem 2007;87:248-256. https://doi.org/10.1016/j.nlm.2006.08.012
  19. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS. BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 2014;18:(1). http://dx.doi.org/10.1093/ijnp/pyu033.
  20. Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 2000;23:209-216. https://doi.org/10.1016/S0166-2236(99)01543-X
  21. Ballaz S, Morales I, Rodriguez M, Obeso JA. Ascorbate prevents cell death from prolonged exposure to glutamate in an in vitro model of human dopaminergic neurons. J Neurosci Res 2013;91:1609-1617. https://doi.org/10.1002/jnr.23276
  22. Moretti M, Budni J, Freitas AE, Rosa PB, Rodrigues AL. Antidepressant-like effect of ascorbic acid is associated with the modulation of mammalian target of rapamycin pathway. J Psychiatr Res 2014; 48:16-24. https://doi.org/10.1016/j.jpsychires.2013.10.014
  23. Cunha MP, Budni J, Ludka FK, Pazini FL, Rosa JM, Oliveira A, et al. Involvement of PI3K/Akt Signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. Mol Neurobiol 2015 May 6 [Epub ahead of print]. http://dx.doi.org/10.1007/s12035-015-9192-4.
  24. Szewczyk B, Pochwat B, Rafalo A, Palucha-Poniewiera A, Domin H, Nowak G. Activation of mTOR dependent signaling pathway is a necessary mechanism of antidepressant-like activity of zinc. Neuropharmacology 2015;99:517-526. https://doi.org/10.1016/j.neuropharm.2015.08.026
  25. Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, et al. Scopolamine rapidly increases mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry 2013;74:742-749. https://doi.org/10.1016/j.biopsych.2013.04.025
  26. Dwyer JM, Lepack AE, Duman RS. mTOR activation is required for the antidepressant effects of mGluR2/3 blockade. Int J Neuropsychopharmacol 2012;15:429-434. https://doi.org/10.1017/S1461145711001702
  27. Koike H, Iijima M, Chaki S. Involvement of the mammalian target of rapamycin signaling in the antidepressant-like effect of group II metabotropic glutamate receptor antagonists. Neuropharmacology 2011;61:1419-1423. https://doi.org/10.1016/j.neuropharm.2011.08.034
  28. Palucha-Poniewiera A, Szewczyk B, Pilc A. Activation of the mTOR signaling pathway in the antidepressant-like activity of the mGlu5 antagonist MTEP and the mGlu7 agonist AMN082 in the FST in rats. Neuropharmacology 2014;82:59-68. https://doi.org/10.1016/j.neuropharm.2014.03.001
  29. Lu Y, Wang C, Xue Z, Li C, Zhang J, Zhao X, et al. PI3K/AKT/mTOR signaling-mediated neuropeptide VGF in the hippocampus of mice is involved in the rapid onset antidepressant-like effects of GLYX-13. Int J Neuropsychopharmacol 2014 Dec 25;18(5). http://dx.doi.org/10.1093/ijnp/pyu110.
  30. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, et al. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1774-1779. https://doi.org/10.1016/j.pnpbp.2011.05.010
  31. Machado-Vieira R, Zanetti MV, Teixeira AL, Uno M, Valiengo LL, Soeiro-de-Souza MG, et al. Decreased AKT1/mTOR pathway mRNA expression in short-term bipolar disorder. Eur Neuropsychopharmacol 2015;25:468-473. https://doi.org/10.1016/j.euroneuro.2015.02.002
  32. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD- 95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2009;33:70-75. https://doi.org/10.1016/j.pnpbp.2008.10.005
  33. Karolewicz B, Szebeni K, Gilmore T, Maciag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol 2009;12:143-153. https://doi.org/10.1017/S1461145708008985
  34. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, et al. A negative regulator of MAP kinase causes depressive behavior. Nat Med 2010;16:1328-1332. https://doi.org/10.1038/nm.2219
  35. Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN. Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 2001;77:916-928. https://doi.org/10.1046/j.1471-4159.2001.00300.x
  36. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatmentresistant major depression: a two-siterandomized controlled trial. Am J Psychiatry 2013;170:1134-1142. https://doi.org/10.1176/appi.ajp.2013.13030392
  37. Lapidus KA, Levitch CF, Perez AM, Brallier JW, Parides MK, Soleimani L, et al. A randomized controlled trial of intranasal ketamine in major depressive disorder. Biol Psychiatry 2014;76:970-976. https://doi.org/10.1016/j.biopsych.2014.03.026
  38. Bockaert J, Marin P. mTOR in brain physiology and pathologies. Physiol Rev 2015;95:1157-1187. https://doi.org/10.1152/physrev.00038.2014
  39. Russo E, Citraro R, Donato G, Camastra C, Iuliano R, Cuzzocrea S, et al. mTOR inhibition modulates epileptogenesis, seizures and depressive behavior in a genetic rat model of absence epilepsy. Neuropharmacology 2013;69:25-36. https://doi.org/10.1016/j.neuropharm.2012.09.019
  40. Hemmeter UM, Hemmeter-Spernal J, Krieg JC. Sleep deprivation in depression. Expert Rev Neurother 2010;10:1101-1115. https://doi.org/10.1586/ern.10.83
  41. Park SW, Lee JG, Seo MK, Lee CH, Cho HY, Lee BJ, et al. Differential effects of antidepressant drugs on mTOR signalling in rat hippocampal neurons. Int J Neuropsychopharmacol 2014;17:1831-1846. https://doi.org/10.1017/S1461145714000534