• Title/Summary/Keyword: NLP application

Search Result 36, Processing Time 0.391 seconds

A review on the NLP techniques for reducing anxiety in dental phobic patients (치과 공포증환자의 불안 경감을 위한 NLP기법에 대한 고찰)

  • Kwon, Won-Dal;Seol, Ki-Moon
    • The Journal of the Korean dental association
    • /
    • v.48 no.11
    • /
    • pp.829-840
    • /
    • 2010
  • In recent years, medical techniques have provided patients with various measures to improve their quality of life. For dental treatment, drug-mediated sedation techniques for relieving dental anxiety have been developed, but behavior control through drugmediation may be limited because of possible side effects, contraindications, and the additional expense to the patient. Many patients tend to avoid the treatment or are unwilling to accept it and this makes both patients and dentists feel pressured. The field of NLP application might alleviate this uncomfortableness. Recently, NLP has spread to the dental and medical field rapidly and has been used in surgical treatments as well as in direct psychotherapy. NLP techniques which could be applied to dental phobic patients are as follows. 1) anchoring, 2) dissociation, 3) submodality change, 4) time line threapy, 5) swish pattern, 6) six step reframing, 7) parts integration, 8) modeling and imagination and so on. The aim of this study is to examine the strategy of NLP psychology so that dental phobic patients can be treated efficiently and effectively by the application of behavior management. Through NLP, patients can be induced to have more positive attitudes and experiences in future dental treatment.

A Study on Use Case Analysis and Adoption of NLP: Analysis Framework and Implications (NLP 활용 사례 분석 및 도입에 관한 연구: 분석 프레임워크와 시사점)

  • Park, Hyunjung;Lim, Heuiseok
    • Journal of Information Technology Services
    • /
    • v.21 no.2
    • /
    • pp.61-84
    • /
    • 2022
  • With the recent application of deep learning to Natural Language Processing (NLP), the performance of NLP has improved significantly and NLP is emerging as a core competency of organizations. However, when encountering NLP use cases that are sporadically reported through various online and offline channels, it is often difficult to come up with a big picture of how to understand and interpret them or how to connect them to business. This study presents a framework for systematically analyzing NLP use cases, considering the characteristics of NLP techniques applicable to almost all industries and business functions, environmental changes in the era of the Fourth Industrial Revolution, and the effectiveness of adopting NLP reflecting all business functional areas. Through solving research questions based on the framework, the usefulness of it is validated. First, by accumulating NLP use cases and pivoting them around the business function dimension, we derive how NLP techniques are used in each business functional area. Next, by synthesizing related surveys and reports to the accumulated use cases, we draw implications for each business function and major NLP techniques. This work promotes the creation of innovative business scenarios and provides multilateral implications for the adoption of NLP by systematically viewing NLP techniques, industries, and business functional areas. The use case analysis framework proposed in this study presents a new perspective for research on new technology use cases. It also helps explore strategies that can dramatically improve organizational performance through a holistic approach that encompasses all business functional areas.

An Analysis of Trends in Natural Language Processing Research in the Field of Science Education (과학교육 분야 자연어 처리 기법의 연구동향 분석)

  • Cheolhong Jeon;Suna Ryu
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.39-55
    • /
    • 2024
  • This study aimed to examine research trends related to Natural Language Processing (NLP) in science education by analyzing 37 domestic and international documents that utilized NLP techniques in the field of science education from 2011 to September 2023. In particular, the study systematically analyzed the content, focusing on the main application areas of NLP techniques in science education, the role of teachers when utilizing NLP techniques, and a comparison of domestic and international perspectives. The analysis results are as follows: Firstly, it was confirmed that NLP techniques are significantly utilized in formative assessment, automatic scoring, literature review and classification, and pattern extraction in science education. Utilizing NLP in formative assessment allows for real-time analysis of students' learning processes and comprehension, reducing the burden on teachers' lessons and providing accurate, effective feedback to students. In automatic scoring, it contributes to the rapid and precise evaluation of students' responses. In literature review and classification using NLP, it helps to effectively analyze the topics and trends of research related to science education and student reports. It also helps to set future research directions. Utilizing NLP techniques in pattern extraction allows for effective analysis of commonalities or patterns in students' thoughts and responses. Secondly, the introduction of NLP techniques in science education has expanded the role of teachers from mere transmitters of knowledge to leaders who support and facilitate students' learning, requiring teachers to continuously develop their expertise. Thirdly, as domestic research on NLP is focused on literature review and classification, it is necessary to create an environment conducive to the easy collection of text data to diversify NLP research in Korea. Based on these analysis results, the study discussed ways to utilize NLP techniques in science education.

Analysis of the Status of Natural Language Processing Technology Based on Deep Learning (딥러닝 중심의 자연어 처리 기술 현황 분석)

  • Park, Sang-Un
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.63-81
    • /
    • 2021
  • The performance of natural language processing is rapidly improving due to the recent development and application of machine learning and deep learning technologies, and as a result, the field of application is expanding. In particular, as the demand for analysis on unstructured text data increases, interest in NLP(Natural Language Processing) is also increasing. However, due to the complexity and difficulty of the natural language preprocessing process and machine learning and deep learning theories, there are still high barriers to the use of natural language processing. In this paper, for an overall understanding of NLP, by examining the main fields of NLP that are currently being actively researched and the current state of major technologies centered on machine learning and deep learning, We want to provide a foundation to understand and utilize NLP more easily. Therefore, we investigated the change of NLP in AI(artificial intelligence) through the changes of the taxonomy of AI technology. The main areas of NLP which consists of language model, text classification, text generation, document summarization, question answering and machine translation were explained with state of the art deep learning models. In addition, major deep learning models utilized in NLP were explained, and data sets and evaluation measures for performance evaluation were summarized. We hope researchers who want to utilize NLP for various purposes in their field be able to understand the overall technical status and the main technologies of NLP through this paper.

Network Architecture Based on Multi-label and NLP Learning for Genre Prediction of Movie Posters (영화 포스터의 장르 예측을 위한 멀티 레이블과 NLP 학습 기반의 네트워크 아키텍처)

  • Sumi Kim;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.373-375
    • /
    • 2023
  • 본 논문에서는 멀티 레이블을 이용한 CNN 구조 활용과 NLP 학습을 이용하여 한국 영화의 장르를 예측하는 방법을 제안한다. 포스터는 영화의 전반적인 내용을 한눈에 알아볼 수 있게 하는 매체이기 때문에 다양한 요소들로 구성되어 있다. 합성곱 신경망(Convolutional neural network)을 활용해, 한국 영화 포스터가 가지는 특징들을 추출하여 영화 장르 분류를 진행하였다. 하지만, 영화의 경우 감독이 생각하는 장르와 관객이 영화를 봤을 때, 느끼는 장르가 다를 수 있다. 그렇기 때문에 장르 예측에 있어서 문제가 발생할 수 있다. 이러한 문제를 완화하기 위해 본 논문에서는 합성곱 신경망 활용뿐만 아니라, 자연어 처리(Natural Language Processing)를 같이 활용한 방법을 제안한다.

  • PDF

A nonlinear programming approach to collision-avoidance trajectory planning of multiple robots

  • Suh, Suk-Hwan;Kim, Myung-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.635-642
    • /
    • 1989
  • We formulated the multi-robot trajectory problem into a series of NLP problem, each of which is that of finding the optimal tip positions of the robots for the next time step. The NLP problem is composed of an objective function and three constraints, namely: a) Joint position limits, b) Joint velocity limits, and c) Collision-avoidance constraints. By solving a series of NLP problem, optimally coordinated trajectories can be determined without requiring any prior path information. This is a novel departure from the previous approach in which either all paths or at least one path is assumed to be given. Practical application of the developed method is for optimal synthesis of multiple robot trajectories in off-line. To test the validity and effectiveness of the method, numerical examples are illustrated.

  • PDF

A Study on the Pipe Network System Design Using Non-Linear programming (비선형 계획법을 이용한 상수도 관망설계에 관한 연구)

  • 김정환;김태균
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.59-67
    • /
    • 1994
  • The objective of this study is to develop a method which can design an optimal pipe network system using nonlinear programming(NLP) technique. The method finds the minimum-cost pipe network while satisfying all the design constraints including hydraulic constraints. The method developed in this study was applied to the Goyang distribution area in Goyang, Kyoungi-do. It has been found in the application and the comparison between the original design and the optimal design of this study that the optimal design method developed in this study does not require the trial-and-error procedure while satisfying the discharge and pressure requirements at the demanding nodes. Therefore, the optimal design method using NLP could be effectively utilized in the practical design considering economic aspect of the pipe network system at the same time.

  • PDF

Automatic Mapping Between Large-Scale Heterogeneous Language Resources for NLP Applications: A Case of Sejong Semantic Classes and KorLexNoun for Korean

  • Park, Heum;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.15 no.2
    • /
    • pp.23-45
    • /
    • 2011
  • This paper proposes a statistical-based linguistic methodology for automatic mapping between large-scale heterogeneous languages resources for NLP applications in general. As a particular case, it treats automatic mapping between two large-scale heterogeneous Korean language resources: Sejong Semantic Classes (SJSC) in the Sejong Electronic Dictionary (SJD) and nouns in KorLex. KorLex is a large-scale Korean WordNet, but it lacks syntactic information. SJD contains refined semantic-syntactic information, with semantic labels depending on SJSC, but the list of its entry words is much smaller than that of KorLex. The goal of our study is to build a rich language resource by integrating useful information within SJD into KorLex. In this paper, we use both linguistic and statistical methods for constructing an automatic mapping methodology. The linguistic aspect of the methodology focuses on the following three linguistic clues: monosemy/polysemy of word forms, instances (example words), and semantically related words. The statistical aspect of the methodology uses the three statistical formulae ${\chi}^2$, Mutual Information and Information Gain to obtain candidate synsets. Compared with the performance of manual mapping, the automatic mapping based on our proposed statistical linguistic methods shows good performance rates in terms of correctness, specifically giving recall 0.838, precision 0.718, and F1 0.774.

  • PDF

Tax Judgment Analysis and Prediction using NLP and BiLSTM (NLP와 BiLSTM을 적용한 조세 결정문의 분석과 예측)

  • Lee, Yeong-Keun;Park, Koo-Rack;Lee, Hoo-Young
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.181-188
    • /
    • 2021
  • Research and importance of legal services applied with AI so that it can be easily understood and predictable in difficult legal fields is increasing. In this study, based on the decision of the Tax Tribunal in the field of tax law, a model was built through self-learning through information collection and data processing, and the prediction results were answered to the user's query and the accuracy was verified. The proposed model collects information on tax decisions and extracts useful data through web crawling, and generates word vectors by applying Word2Vec's Fast Text algorithm to the optimized output through NLP. 11,103 cases of information were collected and classified from 2017 to 2019, and verified with 70% accuracy. It can be useful in various legal systems and prior research to be more efficient application.

Evaluation Method for Korean Morphological Analysis System and it's Application to MATEC99 (한국어 형태소 분석 시스템에 대한 평가 방법 및 적용 사례 분석)

  • Kim, Jin-Dong;Rim, Hae-Chang;Park, Jay-Duke;Lee, Jae-Sung
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10d
    • /
    • pp.44-49
    • /
    • 1999
  • 언어계통상 교착어에 속하는 한국어는 형태소 분석 결과가 복잡하게 주어지기 때문에 형태소 분석 시스템에 대한 효과적인 평가가 쉽지 않다. 본 논문에서는 한국어 형태소 분석 시스템에 대한 평가 방법을 제시한다. 또한 이를 MATEC99에 적용한 사례를 분석하여 이에 대한 타당성을 입증하고 보완점을 기술한다.

  • PDF