‘89 KACC 1989. 10. 27~28

A Nonlinear Programming Approach to Collision-Avoidance

Trajectory Planning of Multiple Robots

Suk-Hwan Suh

Department of Industrial Engineering
POSTECH
P.O. Box 125, Pohang 790-600, Korea.-

Myung-Soo Kim

Department of Computer Science
POSTECH
P.O. Box 125, Pohang 790-600, Korea.

Abstract

We formulated the multi-robot trajectory problem into a series of NLP problems, each of which is that of finding
the optimal tip positions of the robots for the next time step. The NLP problem is composed of an objective function
and three constraints, namely: a) Joint position limits, b) Joint velocity limits, and ¢) Collision-avoidance constraints.
By solving a series of NLP problems, optimally coordinated trajectories can be determined without requiring any
prior path information. This is a novel departure from the previous approach in which either all paths or at least one
path is assurned to be given. Practical application of the developed method is for optimal syuthesis of multiple robot
trajectories in off-line. To test the validity and effectiveness of the method, numerical examples are illustrated.

1 Introduction

Recently there has been a great deal of interest shown to multi-
robot systems as there are increasing number of applications
requiring more than one robot. Also the multi-robot configura-
tion is an attractive layout in the sense of resource utilization;
e.g., tool sharing. For the multi-robot environment in which the
work areas of two or more manipulators intersect, the collision-
avoidance problem, the problem of determining paths for a set
of robots so that they do not collide, is a critical issue. Strictly
speaking, collision-avoidance path planning for multiple robots
is not just a spatial planning problem for a single robot, but a
trajectory planning problem as collision-avoidance is dependent
on path execution timing. Thus, the previous path planning ap-
proach to single arms is not directly applicable to multi-robot
systems.

Only a few research results have been reported on the tra-
jectory planning for multi-robot systems. Freund et al. [1] pro-
posed an approach to the findpath problem in multi-robot sys-
tems based on a hierachical system structure. They linearized
the manipulator dynamics, and developed methods to detect and
avoid collision on-line. Their collision-avoidance strategy is for
a (8 —r) type of manipulator and mobile robot. In other words,
the algorithm must be refined further for the general type of
robots with six-degree-of-freedom. Toumassoud {2] presented a
geometric approach for avoiding obstacles which may be appli-
cable to two 3D robots. His method is a local method based on
the extreme separating hyperplanes.

Lee et al. [3] considered trajectory planning of two robots.
They adopted straight line paths for both robot hands which
were simplified as wrist-centered spheres. A collision map dis-
plays the collision-time period in which the distance between
two wricts is less than or equal to the sum of the rad:i of the
two wrists. Although this method is simple and attractive in
many cases, there are several potential problems. First, time
delay and speed reduction schemes may not always solve the
collision-avoidance problem as discussed in {3]. In such a case,
the straight line paths have to be modified as well. Second, since

635

the collision is detected only with reference to the wrist, the re-
sultaut trajectories may lead to collision at the lower links of
manipulators.

Recently, Chong et. al [4] presented a collision-avoidance
scheme for two robots. They took a leader-follower approach
which has been commonly adopted for the control of two arms
carrying a common object [5-7]. The leader’s path is given by a
straight line and the collision-aviodance scheme for the follower
is determined by the linear programming. In this formulation,
the physical meaning of the objective function is not clear.

Most of the previous collision-avoidance schemes require paths
a priori for either one or two robots. The straight line path, typi-
cally used, is often hard to adopt for a general work environment
in the presence of obstacles. For such a case, the problem of find-
ing obstacle-free paths has to be addressed. Thus the trajectory
planning is divided into two steps; i.e., obstacle-avoidance path
planning followed by collision-avoidance path execution. In the
paper [8], we developed a two-step minimum-time trajectory
planning method for two robots. In this method the obstacle-
avoidance paths and interference region maps are obtained by
an interactive CAD program, namely MULTPATH, and the
minimum-time collision-avoidance path execution scheme is de-
termined by the dynamic programming.

In this paper, we present a new approach to finding both the
obstacle-avoidance paths and collision-avoidance path execution
scheme in a unified fashion. This method does not require any
paths as they are determined in the algorithm. For a given set
of starting and destination positions®, the problem of finding
optimally coordinated movements for each robot at each time
increment is formulated into a non-linear programming (NLP).
In this fashion, the whole trajectory can be determined by solv-
ing NLP problems sequentially.

NLP approach has been conventionally used for the opti-
mization of static systems, but has not been used for the dy-
namic problems such as multi-robot trajectory planning problem
that we are dealing with. In this paper, it has been our primary

"Henceforth, the term “position” or “point” is used to mean both the
position and orientation of robot.



concern to formulate the trajectory problem into NLP and test
the validity of this approach. Since constraints in NLP are con-
junction of algebraic inequalities, previous approach to collision-
avoidance requiring distance computation cannot be used. In
other words, a new method has to be developed. In this paper,
we use configuration space approach and derive non-intersecting
conditions for two line segments and rectangles in 2D, and cylin-
ders in 3D. Although our method is tested by using two robots
modeled by line segments and rectangles in 2D, it can be ex-
tended to general robots with more degrees-of-freedom. Further,
our method can be used for optimal synthesis of multiple robot
trajectories as both path and velocity of robot without requiring
any prior path information.

The remainder of this paper is organized as follows. Sec-
tion 2 states the problem of multi-robot trajectory planning and
introduces NLP solution approach. Section 3 derives algebraic
expressions for objective function and constraints for collision-
avoidance, and other constraints due to joint position and ve-
locity limits. Numerical examples and simulation results are
analyzed in Section 4, and this paper is concluded with a few
remarks in Section 5.

2 Problems and Solution Approach

In a workcell consisting of many robots, we wish to determine
robot trajectories minimizing a certain cost function. Let $; and
E; be the initial and destination positions of the end effector of
robot i, i = 1,...,ng, and {P;(t), t € [0,Ti]} be its trajectory
function specifying the end effector position at time ¢, where np
is the number of robots and 7; is traveling time of robot 7 from
Si to E;. Further let T,(t) and Q be the space occupied by the
i-th robot, and obstacles, {O;, i = 1,...,n0}, respectively.
Taking a general cost function associated with the traversal
time of each robot,
C=FT,...,Thy), (1)

the minimum-cost multi-robot trajectory (MCMRT) problem
is to find an optimal set of trajectory functions, {P*(t), t €
[0,Ti], i = 1,...,nR}, by minimizing the cost function (1) sub-
Jject to the obstacle-avoidance constraint,

T(t) N D=9, Vit (2)
the mutual collision-avoidance constraint,
Ti(t) N T;(t) =¢, Vi, j, t, wherei # j, (3)
the joint position-limit constraint,
H™[P(0) € (07,0}, Vi, t, 4)
the joint velocity-limit constraint,
I P®) € 0,0, ¥ i 1, )
and the boundary conditions,
P0)=5;, P(T))=E;, i=1,...,ng, (6)

where H~ and J~ are inverse kinematics for position and veloc-
ity, respectively, and X' = dX/dt.

636

Although the expressions in (1)-(6) state the class of prob-
lem that we are dealing with, there are a number of difficulties
to develop a solution method with the presented form. The
main difficulty arises from the fact that T, i.e., the space occu-

pied by the manipulator is hard to represent analytically. Thus,
the obstacle/collision-avoidance (2)-(3) can only be checked by
computing distances between objects in 3D space. Despite the
existance of efficient methods for computing distances, e.g., {9],
a numerical solution requiring pointwise distance of an object to
the obstacle set? would impose considerable computation prob-
lem. Further, since the MCMRT problem is to determining mul-
tiple robot trajectories the complexity of the problem increases
exponentially as the number of robots increases. This can be
easily seen even in the dual robot case; i. e., ng = 2. Sup-
pose the total number of obstacle-free paths for robot 7 is N,
3 then the optimal trajectories can be determined by evaluat-
ing N1 x N paths in terms of cost. To evaluate a given pair
of paths, one has to deal with velocity determination problem,?
which imposes additional computation problem. Because of the
above difficulties, we will seek an alternative approach to de-
termine the multiple trajectories without counting on distance
computation.

An alternative approach chosen in this paper is to discretize
the problem and to apply discrete optimization technique. By
discretization, the problem is converted to that of finding P;(k),
where k is the time index for interval §%. Thus, the trajectory
planning problem is decomposed into a series of the following
subproblem,

Subproblem 1: Find Pi(k + 1), for a given positions P;(k),
where i = 1,...,npR, subject to the constraints (2)-(5) while
optimizing a performance index (1).

It is worth mentioning that Subproblem 1 is still a contin-
uous problem as the constraints (2)-(5) express the conditions
to satisfy for a time interval 6. If é is small enough one may
treat the constraint as the conditions at the final time only; i.
e.,t =k 6. Note that larger value of § will reduce the number
of subproblems, and hence less computational cost. However, in
this case, it is hard to treat the constraints, particularily (2) and
(3), as final conditions, because sweeping volume of robots have
to be considered in such a case. Taking “end-point concept”,
Subproblem 1 can be formally stated as follows.

Subproblem 2: Find P;(k+1) optimizing a performance index
(1) subject to the constraints:

Tik+1) N Q =9, Vi, !
Tik+1) N Ti(k+1)=¢ Vi, j, wherei#j, (8)
H-[P(k+1)) € [07,0]], Vit (9)
JT[PIk+1)] €[©,07], Vi, t. (10)

*Viewing from one robot, rest of the robots are moving obstacles.

say the paths are from a path planning scheme based on space dis-
cretization method, e.g., [10].

‘as the cost (1) and collision-avoidance(3) are dependent on now the
paths are executed; i.e., they are function of trajectories not jusu paths.
In {5], we presented a velocity determination algorithm using dynamic pro-
gramming technique, and can be used for such purpose.

51t should be pointed out that the discretization is realistic as the robot
control is made at every sampling instance. In such a case § is the sampling
interval of the robot control, Note however, that § could be larger than the
sampling interval in off-line synthesis of robot trajectories.



Notice that Subproblem 2 is a static optimization problem of
following form:
maxz = C(x) (11)

st A(z) < b (12)

where z, z € R"™ are objective function, and decision variables,
respectively, and Eq. (11) and (12) represent objective function
and constraints consisting of m algebraic inequalities, respec-
tively. Depending on functional! type of C and A, the above
problem is classified into linear programming (LP) or non-linear
programming (NLP) problem. There are many solution pack-
ages for these problems, such as MINOS and GINQ®. Therefore,
one way to approach the multi-robot trajectory problem is to
reformulate the problem into the above form and to apply ex-
isting solution packages. The remainder of this paper is mainly
devoted to reformulate the problem; i. e., deriving algebraic ex-
pressions for cost function, collision-avoidance, and joint limits.
It is worth pointing out that collision-avoidance strategy based
on distance computation is hard to apply as the distance between
objects in general can not be reprented by analytic form. We
will show that collision-avoidance conditions can be represented
by non-linear algebraic inequalities, and hence the trajectory
problem is formulated into NLP form.

3 Derivation of algebraic conditions

In this Section, algebraic forms for the NLP formulation are
derived. We first consider constraints for collision-avoidance and
joint limits, followed by the selection of the performance index
to form cost function. Then, the structure of the NLP solution
procedure is summarized later in this Section.

3.1 Collision-Avoidance Strategy

Contemporary collision-avoidance scheme is to compute the dis-
tance between links of one robot and those of the other. Rep-
resenting robot link by a spherical extension of line segment,
collision-avoidance can be expressed as follows:

ler — ea| > (1 + 73) (13)

where |e; — e2| is distance between e; and ez and e, is the spine
of the ¢ — th link, and 7; is the radius of the 7 — th link. This
scheme is conceptually simple and has been widely used. With
this method, however, one has to face a number of difficulties
in solving the trajectory planning problem.

An alternative chosen in this paper is to express collision-
avoidance condition by an analytic form in the parametric space
so that it can be formulated into NLP. In what follows, we dis-
cuss algebraic collision-avoidance conditions (CAC) for a pair of
links. First, we consider a simple case where the radii of two
links are zero on plane, for which a closed-form expression is
derived. Then, we treat a more complex and general case where
the links are modeled as rectangles and cylinders.

3.1.1 CAC of linear links

Let mi; = (zij,vij) (1,7 = 1,2) be the two end points and
mio = (20, ¥ip) = %(m,-,l + m;2) be the center of the 4-th link.

SMINOS is a NLP solver in GAMS [11] and GINO is 2 NLP solver (12].

637

Then the parametrized equation of edge 2 is

ei( M) = mi + (AR0O)(my g ~ mya) = A (BRI 4 omyg,
NE[-1,1], i=1,2
(14)
Further, the two edges e; and e; have no intersection if and
only if the two common solutions A; and A, satisfy the following
condition:

FAL]> Yor | Az |> 1 (equiv,,|[(A, A2)ll,, = max(|Ai],|Ae}) > L)
(15)
As shown in Fig. 1, CAC in Eq. (15) is entire parametric
space excluding a square with side length of 2. To express the
feasible space (dotted region) in NLP, however, four “either-or
type” constraints are necessary. In other words, to obtain the
optimal solution, four NLP problems (each of which containing
one of the four constraints) have to be solved, imposing com
putational complexity. To avoid the above problem, we replace
Eq. (15) by the following single constraint:

(A1, 22, > 2% or [M™ + [X2|® > 2 for suff. large n,
(16)

or

271 (g2 — p2.2)(T20 — T10) + (31,10 ~ ¥1,2) (W20 ~ V1.0)]"
+ 2" [(m22 — 22 ) (@20 — T1,0) + (212 — T1,1) (Y20 ~ ¥10)]"
> [(z12 ~ 21,1 )(¥2n — ¥22) — (22,1 — T22)(y12 — v1,0)]"

(17)
where n is a positive integer. Note that the feasible space of Eq.
(16) is an approximation of Eq. (15), and reduces the original
feasible space a bit. For instance, with n of 2, wasted space
is the area between the circle and the square. As n increases
the wasted space decreases (See Fig. 2), in this case, however,
numerical complexity increases.

3.1.2 CAC of Planar Rectangular Links

Assume the i-th link is a planar rectangular link with radius r; >
0. The collision-avoidance between the corresponding medial
axes is a necessary but not sufficient condition for the collision-
avoidance of the two rectangular links. We use the concept of
Configuration space ( C-space) obstacles and reduce the collision-
avoidance problem to the collision-avoidance between the center
of the second link and the C-space obstacle (See Fig. 3). Since
the shape of exact C-space obstacle is rather complex, we sim-
plify the C-space obstacle by slight over-estimations (See Figure
4).

Let m;p = %(m,-,l + mi2) (i = 1,2) be the center of link 1,
and m}, and m/, be the mid points of right and left sides of
link . That is:

; 0 -1
mly = (%) { M } (Mia ~ mig) + mip (18)
miy = mip — (Mg ~ Mmip) = 2mig — ™y (19)

There is no collision if my g is outside the regions Ry, Ry, .., R4
simultaneously. The avoidance of mag from the region Rg is
equivalent to the collosion-avoidance between the two medial
axes. We consider the avoidance from the region R;. The avoid-
ances from the other regions Ry, Ra, and R4 can be derived in
similar ways. The expanded rectangular region R; has its end
point ;2 and its left side point 7 , as follows:



My = mip + ( m;g) (20)

ﬁi;a_—_i)(,,m _

T1+T2)(

ly = mip+ (———=)mi, — mio) (21)

To surround R; by a closed curve, we first translate By so
that its center is located at the origin and apply a linear trans-
formation so that the rectangle is mapped into a standard square
of length 2. This linear transformation can be represented by a

madtrix: 1
[ Ty — 10 My — Mo ] (22)
- ~t -1
— [ 9i1,2 — %0 IV = Z10 ] (23)
Y12 %o Y2 Yo
— 1 .
T @r2—m10)0] ;-v1,0)-(F] ;—z1,0)Tr 2 - v 0)
912 — %10 Tro— 1, (24)
Yo~ F12-Tig

Thus, ma g translates to

mao = (m1,0+ Mma2—Map) = 2Map — Ma2 ~ Mo = M21— M10
(25)

and then linearly transforms into
- I} -1
[ M2 — Mo My — Mio ] (m2’1 had ml,o) (26)

The avoidance of R, is formulated by avoiding this trans-
formed point from the closed curve enclosing the standard square
as follows:

[(z21 — 21002 — v10) + (w20 — Y1.0)(T10 — 27 2)]"
+ [(121 —z10)(y1e — )+ (Y21 — vio)(F12 — )"
> 2-{(#12 — 210){#12 — v10) — (12— 710)(d12 ~ vr0)]"
(27)
The avoidance of Ry, R3, and R4 can be formulated similarly.

3.1.3 CAC of Cylindrical Links in 3D

(1) When the medial axes are parallel, we consider the plane
1l determined by the two parallel axes and the projections of
the two cylindrical links onto II. The cylindrical links collide
if and only if the projected rectangular links collide on II. (2)
When these axes are not parallel, there are two planes II; and I
containg each medial axis and parallel to the other axis. Further,
the cross product of the two medial axis vectors is the common
normal vector of II; and Il,. If the distance between IT; and I,
is larger than r; + 72, the links are collision-free. This condition
can be formulated as follows:

(A(z11 — T21) + By — 92.1) + Clzia — 221))°

; 2
> (r1+ )t (A2 + B+ C?) (28)

where A = (g12 — ¥1.1)(222 ~ 221) = (¥22 — Y22 ){z1.2 — z11)s
B = (222 ~ 221212 — 711) — {212 — T12)(222 — 221), and
= (212 — T1,0)(¥22 — ¥2.1) ~ (2,2 = ©21)(H12 ~ ¥1.1)-

Otherwise, we consider the projection of the second link onto
the plane II; containing tne first link. The collision-avoidance
between these two projected rectangular links, a necessary but
not sufficient condition for the collision-avoidance between the
two cylindrical links, is considered in the following.

We can linearly transform the space so that II; is mapped
onto the zy-plane and the first medial axis onto the z-axis. Let

638

my = myg ~ Mip
Thg = Moy — Mg — mz,%’;‘%ﬁf—mg‘ﬂ(ml,z - ml,O)
s = (my,2 — Myp) X (M22 — Mma0)

(29)
Then, M = [ hqrng] = {1 merha] ™! is such a transforma-
tion.

Let T be the translation by —m;o and P, be the projec-
tion onto the zy-plane such that Py{z,y,z) = (z,y). Further,
let m;; = PPMTmy; (i = 1,2 and j = 0,1,2) and m}; =
PzMTmi']v
between two projected rectangular links can be formulated in a

(¢ = 1,2 and j = 1,2). Then the collision avoidance
similar way as in the planar case.

3.2 Joint position/velocity-limit constraints
Using the differential relationship between Cartesian and joint
space, i.e.,

(Pk + 1) = Pi(k)) = J [H™ [P(k)]] dg, (30)

the joint position-limit constraint is

JTUHT [Pk (Bik + 1) = Bi(K))

€ (o= - H-[Bh)].00 - H- (). O

Note that Eq. (20) can be represented by 2 3"0.% n; linear in-
equalities for ng robots as there are 2n; linear inequalities for the
i-th robot, where n; denotes the number of degree-of-freedom of
the i-th robot.

Similiarily, using the differential relationship (19) the joint
velocity-limit constraint is

JIR(R)] (PE+1) - PR e 6[07, 0], (32)

which can be represented by 23" 1%, n; linear inequalities.

3.3 Selection of the performance index

Selection of the performance index is important as it is the key
Since the global
information is not available at the time of next positions are
determined, the performance index should be selected such that
the available information is fully utilized in determining the next
positions. We address three issues in selecting the performance
index. First, we want each robot to move along the most efficient
direction toward the destination. Ideal case is that every robot
moves along the shortest path from the starting position to the
destination. Second, we want to coordinate the robot motions
based on the urgentness of each robot. In other words, higher
priority should be given to the robot which is most likely late
for the scheduled time. Third, the robots should converge to
their destinations without blocking with each other. Note that
the third issue is important in the navigation in which only local
information is available.

Suppose robot i is currently at Pi(k), and Pi(k + 1) is the
next position. Then the effective movement of the robot can be
defined ac the projection of the incremental vector, Pi(k- 1)~
Pi(k), onto the reference vector, (E; ~ Pi(k))/|E; — Pi(k)], i.e.,

factor in determining the robot trajectories.

ED;(k) = (P{k + 1) — P(k))- ( -l%—:-—-ﬁg% ) . (33)

Note that the reference vector is unit vector, and || is Euclidean



norm. In the sense of the projected distance, the closer to the
reference vector the superior the position is. For instance, posi-
tion B (Fig. 5) is superior to position A, although the distance
is the same (Fig. 5(a)), or shorter (Fig. 5(b)).

To maximize the projected distance, each robot will tend to
move far away from the current position along the best direc-
tion. To coordinate the robot motions effectively, we introduce
a coordination factor, which can be thought of as a relative im-
portance of unit effective distance. Suppose motion finishing
times of robots are given by task scheduler, and let 7; be that
of robot i. Then, at the time of k, some robot may have long
way to move to its destination, while some robot is close to its
destination. In the notion of urgency, more weight is given to
the robot which possesses higher potential of being late for its
scheduled time. Considering the velocity limit of each robot,
the weighting factor, W;(k), can be defined as the ratio of an
estimated velocity to reach the destination from P;(k) over the
Cartesian velocity limit, V;, i.e.,

-y = 1B~ BR)
Wi(k) = T F V. (34)

Finally, we want the robots to converge to their destinations
without blocking in the middle. Suppose the configuration of
robots are currently as shown in Fig. 6. In this case, the robots
will try to move to their destinations. However, because of the
collision-avoidance constraints in Section 3.1, they may have to
wander around the current positions and fall into deadlock. In
such a case, we want the robots retract to prevent deadlock in
advance. The degree of retraction should be function of how
close they are; i. e., the current distance between two robots.
Besides, if they are far enough to ignore deadlock possibility, the
weight must be given by 0. In other words, we want to maximize
the following term:

v et - o), (35)

where v is the blocking weigh defined as
v = ezp(—clef — ekl (36)

Note that c is constant determining the blocking weight, and
v approaches 0 (1) as current distance between two robots in-
creases (decreases).

In this way the weight of blocking term can be represented
algebraically. However, since Eq. (35) contains distance be-
tween two links at the next time increment which can not be
represented algebraically, we approximate the distance by the
two points defining the distance of current links; i.e.,

left! — e3*!| & [ef(A1) - 5(2)), (37)

where [¢f — ef] = [eb(A) — e5()l
Considering all the aspects discussed above, the performance
index to maximize is

Pl = (1-v)WiED1+(1—v)Wo EDy+vlef (A1) —eb(A2)]. (38)

It is worth mentioning that W, can be defined differently
based on the task characteristics and the scheduling. For in-
stance, if the motion finishing times are not given but to be
determined, then W; = 1, V4, may be taken. Note also that W;
can be viewed as a coordination rule for the central controller,

639

or 1t can be viewed as a design factor for the robot trajectory
planner.

3.4 NLP Solution Procedure

Based on the discussion so far, the problem of finding the optimal
positions for time & + 1, i.e., Pi(k+ 1), ¢ = 1,...,ng, for given
positions of Pi(k), i = 1,...,np can be formulated into ron-
linear programming (NLP). The NLP is a maximization problem
with the objective function (38) subject to the collision /obstacle-
avoidance constraints ((17), or (27)) joint position-position limit
constraints (31), and joint velocity-limit constraints (32). This
problem can be readily solved by using NLP solver; e.g., MINOS
[11], GINO [12]. Since the NLP algorithm itself is beyond the
scope of this paper, we only present solution procedure to apply
it for optimal trajectory planning. The solution procedure con-
sists of three steps:

e Step I: Initialization.

1. Read in 5;, E;, ¢ = 1,...,ng, and the obstacle
geometry and robot kinematic data.

2. Set k:= 0.

3. Fori=1,...,np
Pi(k) = Si, g¢(f) = 1 (indicating robot i has not

reached the destination)
e Step 2: Termination check.

1. For i such that g(i) = 1
If |Pi(k) — Ei| = 0, then g(3) = 0 (indicating robot i
has reached the destination)

2. If g(i) =0, Vi, stop.
Otherwise, go to Step 3.

e Step & Finding P?(k+1), Vi€ g(i) = 1.

1. Solve the NLP problem by applying a NLP algorithm.
(Note: Treat the reachedrobots, i.e., g(:) = 0, as fixed
obstacles in the NLP formulation.)

2. Set Pi(k)= P*k+1),and k:=k + 1.

Go to Step 2.

4 Numerical Examples

To test the develope'd algorithm, we implemented it to an IBM-
PC. Singe the objective of our research was not to develop a
NLP solver and many commercial packages are available, we
only implemented the application algorithm described in Section
3. The NLP solver we used is MINOS in GAMS developed
by Murtage and P. Gill {11]. However, the package we used
was a “Demonstration Version” in which number of variables
and constraints were limited, full 3D robotic model could not
be implememted requiring more variables and equations than
it accommodate.”
Scara type robots whose kinematic datu including the starting
and destination points are shown in Table 1.

With r; = 0, i = 1,2 (i. e., the linear links), the optimal
paths at each time step (6§ = 0.1lsec) is shown in Fig. 7. The

The test was performed for two two-d.o.f.

"Note, however, that professional versions can easily accommodate these
requirments.



results show that robot 1 and 2 reaches their destinations in
1.6 and 1.0 seconds, respectively. The optimal paths are close
to straight lines except for the midway where the two arms are
close to each other around t = 0.5 second. At that time robot
1 moves down so that robot 2 proceeds toward the destination
since robot 2 has the way of right due to the scheduled time
(T = 1.5sec, Th = 1.0 sec). Note, however, that they do not
always reach destinations in the time T}, and in some cases the
arrival time may be far from being specified. This is because the
purpose of T; is in essence to provide traffic rule in the jammed
atea.

Through out the navigation, the linear links does not get
close to much. This can be explained by n value of CAC and
blocking weight v. The value of n used is 2 (i. e., circle in
parametric space), which in turn over-constrained the feasible
space a bit. Consequently, it prohibits two linear links getting
close too much. Alternatively, the robot could not get close too
much because the blocking wveight v increases as they get close
to cach other. This can be more clearly seen in an example
consisting of two rectangular links.

The example shown in Fig 8 is the same as that of Table 1,
except for the radii of links are 5. The robot 1 and 2 reached
the destinations in 1.7 sec and 1.1 sec, respectively. The early
part of the navigation is about the same as that of the linear
links. Since t = 0.6sec the robot 1 and 2 are getting close to
each other, and at ¢ = 0.7 they give up proceeding to their best
directions, and try to get apart instead. Robot 1 moves back to
the direction whose effective distance is negative, while robot 2
moves to the direction whose effective distance is positive small
value. Consequently, robot 1 takes more time to recover (to
getting out of the jam) than robot 2.

5 Concluding remarks

The problem of determining multiple robot trajectories without
priori path information is addressed in this paper. We formu-
lated the problem into a static optimization problem and solved
by using NLP solver. To apply NLP, we derived algebraic expres-
sions for objective function, collision-avoidance and joint limit

constraints. Derivation of joints limit constraints are straight-
forward, while collision-avoidance constraints calls for special
attentions as conventional strategy requiring distance computa-
tion is hard to apply. Thus, we derived collision-avoidance con-
ditions in a configuration space for a pair of linear, rectangular,
and cylindrical links. Also, selection of performance index is im-
portant as it is a key factor to determines robot trajectories. We
addressed path direction and motion priority by which all the
robots can reach their destinations without blocking. The de-
veloped algorithm has been implemented in PC and the validity
of our method has been proved through the numerical examples.
The test results convinced us the strength of the NLP approach
such that it can be extended to multi-link robotic models, and
hence it will provide a means for optimal synthesis of multiple
robot trajectories.

640

References

[1] E. Freund, and H. Hoyer, “Pathfinding in multi-robot sys-
tems:Solution and applications,” in Proc. Int. Conf. on
Robot. Automat. (San Francisco, CA, Apr. 1986), pp. 103-
111.

[2] P. Tournassoud, “A strategy for obstacle avoidance and its
application to multi-robot systems,” Proc. Int. Conf. on
Robot. Automat. (San Francisco, CA, Apr. 1986), pp. 1224-
1229.

(3] B. H. Lee and C. S. G. Lee, “Collision-Free motion planning
of two robots,” IEEE Trans. on Syst., Man, and Cybern.,
vol. SMC-17, no. 1, pp. 21-32, Jan./Feb. 1987.

[4] N. Y. Chong, D. H. Choi, and I. H. Suh, “Collision-Free
trajectory planning for dual robot arms,” Proc. Conf. on
Automat. Contr. (Seoul, Korea, Oct. 1988), pp. 951-957.

{5] T.J. Tarn, A. K. Bejczy, and X. Yun, “Design of dynamic
control of two cooperating robot arms: Closed chain formu-
lation,” Proc. Int. Conf. on Robot. Automat. (Raleigh, NC,
Mar. 1987), pp. 7-13.

[6] Y. F. Zheng and J. Y. S. Luh, “Joint torques for control of
two coordinated moving robots,” Proc. Int. Conf. on Robot.
Automat. (San Francisco, CA, Apr. 1986}, pp. 1375-1380.

(7] J. H. Lim and D. H. Chyung, “On a control scheme for
two coorperating robot arms,” Proc. Int. Conf. on Robot.
Automat. (St. Louis, MO, Mar. 1985), pp. 334-337.

[8] S. H. Suh, “A study on the trajectory planning for multi-
robot systems,” Proc. Joint Conf. of Korean Management
Science and Korean Industrial Engineering (Pohang, Ko-
rea, Mar. 1989), pp. 18 - 25.

[9] E. G. Gilbert, D. T. Johnson, and S. S. Keerthi, “A fast
procedure for computing the distance between complex ob-
jects in three-dimensional Spac,” IFEE Trans. on Robot.
Automat., vol. 4, no. 2, pp. 193-203, Apr. 1988.

10] C. E. Thrope, “Path relaxation: Path planning for a mobile
robot,” Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-84-5, 1984.

{11] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A user’s
Guide, Redwood City, CA: The Scientific Press, 1988.

[12} J. Liebman, L. Lasdon, L. Schrage, and A. Waren, Modeling
and optimization with GINO, Palo Alto, CA: The Scientific
Press, 1986.



Figure 1: Feasible Space

Figure 2: z" +y" =2 for n = 2,4,8,16

Figure 3: C-space obstacle

641

Figure 4: Approximated C-space obstacle

E;

L i Bt B —5—-.,

(a) Position B is superior to A,
although the distance is the same.

! B
| T |
S B
}**EDA—‘ :

L

(b) Position B is superior to A,
although the distance is shorter.

Figure 5: Comparison of Various Positions.



‘san[ea [uws a3yl

@aBYy 2 pUB [ 30Q0Y X

da38u {gz'0 ‘S$.°0] 2 3I090¥
19321 [g:0 ‘0 1] 1 30Qq04 suoty1sod Furpug
J9%aw (6470 ‘G.°0] :7 3090y
A33au [g°0 ‘G'0) *T 3090 suotyraod Buriamis
D95 /99389p fog ‘og-1 :g 3uror
PELFSCRET ] [£°0 ‘€'0-] :1 utor | x3rWi[ Ajroofsa jurop
93a39p {ogg ‘gl :Z autor
EEET [#°T ‘g°0l :T 3jurtor | xatmr{ worjisod jutop
PERET 4 G'1 x('1) yzBusy way
Jrun ontep s [

suotyeod monEMEp Puv Suiyress IUTPAUT $IXP HIEWIALY 040Y T AGRL

H
H
H
L3
moving
direction

Figure 6: Blocking Configuration.

S —— |

Figure 7: Optimal Paths of Linear Links.

Figure 8: Optimal Paths of Rectangular Links.

642



