• Title/Summary/Keyword: NITE Method

Search Result 6, Processing Time 0.018 seconds

Effects of Fiber Arrangement Direction on Microstructure Characteristics of NITE-SiC Composites (NITE-SiC 복합재료의 미세구조 특성에 미치는 섬유배열방향 영향)

  • Lee, Young-Ju;Yoon, Han-Ki;Park, Joon-Soo;Kohyama, A.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.158-161
    • /
    • 2006
  • SiC materials have been extensively studied for high temperature components in advanced energy conversion system and advanced gas turbine. However, the brittle characteristics of SiC such as law fracture toughness and law strain-to fracture impose a severe limitation on the practical applications of SiC materials. SiC/SiC composites can be considered as a promising candidate in various structural materials, because of their good fracture toughness. In this composite system, the direction of SiC fiber will give an effect to the mechanical properties. It is therefore important to control a properdirection of SiC fiber for the fabrication of high performance SiC/SiC composites. In this study, unidirection and two dimension woven structures of SiC/SiC composites were prepared starting from Tyranno SA fiber. SiC matrix was obtained by nano-powder infiltration and transient eutectoid (NITE) process. Effect of microstructure and density on the sintering temperature in NITE-SiC/SiC composites are described and discussed with the fiber direction of unidirection and two dimension woven structures.

  • PDF

Coupled thermal and structural analysis of roller compacted concrete arch dam by three-dimensional finite element method

  • Bayagoob, Khaled H.;Noorzaei, Jamaloddin;Abdulrazeg, Aeid A.;Al-Karni, Awad A.;Jaafar, Mohd Saleh
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.401-419
    • /
    • 2010
  • This paper focuses on the development, verification and application of a three-dimensional nite element code for coupled thermal and structural analysis of roller compacted concrete arch dams. The Ostour Arch dam located on Ghezel-Ozan River, Iran, which was originally designed as conventional concrete arch dam, has been taken for the purpose of verication of the nite element code. In this project, RCC technology has been ascertained as an alternative method to reduce the cost of the project and make it competitive. The thermal analysis has been carried out taking into account the simulation of the sequence of construction, environmental temperature changes, and the wind speed. In addition, the variation of elastic modulus with time has been considered in this investigation using Concard's model. An attempt was made to compare the stresses developed in the dam body five years after the completion of the dam with those of end of the construction. It was seen that there is an increase in the tensile stresses after five years over stresses obtained immediately at the end of construction by 61.3%.

THE GRADIENT RECOVERY FOR FINITE VOLUME ELEMENT METHOD ON QUADRILATERAL MESHES

  • Song, Yingwei;Zhang, Tie
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1411-1429
    • /
    • 2016
  • We consider the nite volume element method for elliptic problems using isoparametric bilinear elements on quadrilateral meshes. A gradient recovery method is presented by using the patch interpolation technique. Based on some superclose estimates, we prove that the recovered gradient $R({\nabla}u_h)$ possesses the superconvergence: ${\parallel}{\nabla}u-R({\nabla}u_h){\parallel}=O(h^2){\parallel}u{\parallel}_3$. Finally, some numerical examples are provided to illustrate our theoretical analysis.

Simulation Techniques for Mid-Frequency Vibro-Acoustics Virtual Tools For Real Problems

  • Desmet, Wim;Pluymers, Bert;Atak, Onur;Bergen, Bart;Deckers, Elke;Huijssen, Koos;Van Genechten, Bert;Vergote, Karel;Vandepitte, Dirk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.49-49
    • /
    • 2010
  • The most commonly used numerical modelling techniques for acoustics and vibration are based on element based techniques, such as the nite element and boundary element method. Due to the huge computational eorts involved, the use of these deterministic techniques is practically restricted to low-frequency applications. For high-frequency modelling, probabilistic techniques such as SEA are well established. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available. In this frequency range, the computational eorts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid. In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current midfrequency problem. One family of research methods focuses on novel deterministic approaches with an enhanced convergence rate and computational eciency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. Amongst those techniques, a wave based prediction technique using an indirect Tretz approach is being developed at the K.U.Leuven - Noise and Vibration Research group. This paper starts with an outline of the major features of the mid-frequency modelling challenge and provides a short overview of the current research activities in response to this challenge. Next, the basic concepts of the wave based technique and its hybrid coupling with nite element schemes are described. Various validations on two- and threedimensional acoustic, elastic, poro-elastic and vibro-acoustic examples are given to illustrate the potential of the method and its benecial performance as compared to conventional element based methods. A closing part shares some views on the open issues and future research directions.

  • PDF

Bending Strength and Crack Healing of SiCf/SiC Composite Material (SiCf/SiC 복합재료의 굽힘 강도 특성 및 균열 치유 효과)

  • Ahn, Seok-Hwan;Do, Jae-Yoon;Moon, Chang-Kwon;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.94-102
    • /
    • 2013
  • Manufactured $SiC_f/SiC$ composites by NITE method was investigated fracture characteristics according to the size of the surface crack. Coated surface crack with a $SiO_2$ colloid in several ways was evaluating the possibility of healing. The strength of CCS and UCS is 313 and 230MPa, respectively and it is about 1/3 of the SPS. Bending strength of $SiC_f/SiC$ composites has no effect with the pre-crack size to the critical crack size. $SiC_f/SiC$ composites can not generate large amount of $SiO_2$ oxides to the bottom of crack, and is only generated randomly on surfaces, and can not contribute to the recovery of bending strength.

Characteristics of Shear Strength for joined SiC-SiC Ceramics (SiC세라믹스 동종재 접합재의 전단강도 특성 평가)

  • Yoon, Han Ki;Jung, Hun Chea;Hinoki, T.;Kohyama, A.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.483-487
    • /
    • 2014
  • In this study, joining methods with SiC powder as the joining adhesives were studied in order to avoid the residual stresses coming from CTE (Coefficient of Thermal Expansion) mismatch between substrate and joining layer. The shear strength and microstructure of joined material between SiC substrates are investigated. The commercial Hexoloy-SA (Saint-Gobain Ceramics, USA) used in this work as substrate material. The fine ${\beta}$-SiC nano-powder which the average particle size is below 30 nm, $Al_2O_3$, $Y_2O_3$, and $SiO_2$ were used as joining adhesives. The specimens were joined with 20MPa and $1400-1900^{\circ}C$ by hot pressing in argon atmosphere. The shear test was performed to investigate the bonding strength. The cross-section of the joint was characterized by using an optical microscope and scanning electron microscopy (SEM).