• Title/Summary/Keyword: NIR sensors

Search Result 47, Processing Time 0.023 seconds

High-sensitivity NIR Sensing with Stacked Photodiode Architecture

  • Hyunjoon Sung;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.200-206
    • /
    • 2023
  • Near-infrared (NIR) sensing technology using CMOS image sensors is used in many applications, including automobiles, biological inspection, surveillance, and mobile devices. An intuitive way to improve NIR sensitivity is to thicken the light absorption layer (silicon). However, thickened silicon lacks NIR sensitivity and has other disadvantages, such as diminished optical performance (e.g. crosstalk) and difficulty in processing. In this paper, a pixel structure for NIR sensing using a stacked CMOS image sensor is introduced. There are two photodetection layers, a conventional layer and a bottom photodiode, in the stacked CMOS image sensor. The bottom photodiode is used as the NIR absorption layer. Therefore, the suggested pixel structure does not change the thickness of the conventional photodiode. To verify the suggested pixel structure, sensitivity was simulated using an optical simulator. As a result, the sensitivity was improved by a maximum of 130% and 160% at wavelengths of 850 nm and 940 nm, respectively, with a pixel size of 1.2 ㎛. Therefore, the proposed pixel structure is useful for NIR sensing without thickening the silicon.

Evaluation of Biomass and Nitrogen Status in Paddy Rice Using Ground-Based Remote Sensors (지상원격측정 센서를 이용한 벼의 생체량 및 질소 영양 평가)

  • Kang, Seong-Soo;Gong, Hyo-Young;Jung, Hyun-Cheol;Kim, Yi-Hyun;Hong, Suk-Young;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.954-961
    • /
    • 2010
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for quantifying yield, biomass, and nitrogen (N) stress during growing season. This study was conducted to assess biomass and nitrogen (N) status of paddy rice (Oryza sativa L.) plants under N stress using passive and active ground-based remote sensors. Nitrogen application rates were 0, 70, 100, and 130 kg N $ha^{-1}$. At each growth stage, reflectance indices measured with active sensor showed higher correlation with DW, N uptake and N concentration than those with the passive sensor. NIR/Red and NIR/Amber indices measured with Crop Circle active sensors generally had a better correlation with dry weight (DW), N uptake and N content than vegetation indices from Crop Circle passive sensor and NDVIs from active sensors. Especially NIR/Red and NIR/amber ratios at the panicle initiation stage were most closely correlated with DW, N content, and N uptake. Rice grain yield, DW, N content and N uptake at harvest were highly positively correlated with canopy reflectance indices measured with active sensors at all sampling dates. N application rate explains about 91~92% of the variability in the SI calculated from NIR/Red or NIR/Amber indices measured with Crop Circle active sensors on 12 July. Therefore, the in-season sufficiency index (SI) by NIR/Red or NIR/Amber index from Crop Circle active sensors can be used for determination of N application rate.

Synthesis and Optoelectronic Characteristics of Ag2Se Nanoparticle for NIR Sensor Application (근적외선 센서를 위한 Ag2Se 나노 입자 합성 및 광전기적 특성)

  • Jang, Jaewon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.266-269
    • /
    • 2019
  • In this study, $Ag_2Se$ nanoparticles were synthesized by employing the colloidal method. The synthesized $Ag_2Se$ nanocrystals were spherical in shape with a diameter of approximately 4 nm and had high crystallinity. These attributes of $Ag_2Se$ nanocrystals were determined through images obtained from a high resolution transmission electron microscope. Thin films comprising the synthesized $Ag_2Se$ nanoparticles had an optical band gap of 1.5 eV. Furthermore, fabricated NIR sensors comprising $Ag_2Se$ nanoparticles exhibited a high detectivity of $5.5{\times}10^9$ Jones (above $1{\times}10^9$) at room temperature, leading to low power consumption

Frequency Domain Methods for Demosaicking of Single-Chip RGB/NIR Image Sensors

  • Jeong, Kil-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.25-30
    • /
    • 2017
  • In this paper, We proposed an effective demosaicking method for single chip RGB-NIR sensors to recover RGB and NIR images. As the method operates in the spatial frequency domain, the frequency domain characteristics of the sampled CFA data are investigated. Using the luminance signal in the frequency domain and the chrominance signals are processed separately with different filters. The simulated images using the real images are compared with other state-of-art methods. As a result, the proposed demosaicking method resulted an effective calculation by a single processing which the existing alternating projection method requires repeated calculation.

Silicon Prism-based NIR Spectrometer Utilizing MEMS Technology

  • Jung, Dong Geon;Son, Su Hee;Kwon, Sun Young;Lee, Jun Yeop;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.91-95
    • /
    • 2017
  • Recently, infrared (IR) spectrometers have been required in various fields such as environment, safety, mobile, automotive, and military. This IR dispersive sensor detection method of substances is widely used. In this study, we fabricated a silicon (Si) prism-based near infrared (NIR) spectrometer utilizing micro electro mechanical system (MEMS) technology. Si prism-based NIR spectrometer utilizing MEMS technology consists of upper, middle, and lower substrates. The upper substrate passes through the incident IR ray selectively. The middle substrate, acting as a prism, disperses and separates the incident IR beam. The lower substrate has an amorphous Si (a-Si)-based bolometer array to detect the IR spectrum. The fabricated Si prism-based NIR spectrometer utilizing MEMS technology has the advantage of a simple structure, easy fabrication steps, and a wide NIR region operating range.

Soil Profile Measurement of Carbon Contents using a Probe-type VIS-NIR Spectrophotometer (프로브형 가시광-근적외선 센서를 이용한 토양의 탄소량 측정)

  • Kweon, Gi-Young;Lund, Eric;Maxton, Chase;Drummond, Paul;Jensen, Kyle
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.382-389
    • /
    • 2009
  • An in-situ probe-based spectrophotometer has been developed. This system used two spectrometers to measure soil reflectance spectra from 450 nm to 2200 nm. It collects soil electrical conductivity (EC) and insertion force measurements in addition to the optical data. Six fields in Kansas were mapped with the VIS-NIR (visible-near infrared) probe module and sampled for calibration and validation. Results showed that VIS-NIR correlated well with carbon in all six fields, with RPD (the ratio of standard deviation to root mean square error of prediction) of 1.8 or better, RMSE of 0.14 to 0.22%, and $R^2$ of 0.69 to 0.89. From the investigation of carbon variability within the soil profile and by tillage practice, the 0-5 cm depth in a no-till field contained significantly higher levels of carbon than any other locations. Using the selected calibration model with the soil NIR probe data, a soil profile map of estimated carbon was produced, and it was found that estimated carbon values are highly correlated to the lab values. The array of sensors (VIS-NIR, electrical conductivity, insertion force) used in the probe allowed estimating bulk density, and three of the six fields were satisfactory. The VIS-NIR probe also showed the obtained spectra data were well correlated with nitrogen for all fields with RPD scores of 1.84 or better and coefficient of determination ($R^2$) of 0.7 or higher.

Design and Fabrication of an NIR Grism Si Optical Area Sensor Spectrometer with In-band Reference Wavelength (대역 내 기준 파장을 갖는 근적외선 그리즘 실리콘 광 면 센서 분광기 설계 및 제작)

  • Song, Jae-Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • An NIR grism Si optical area sensor spectrometer with in-band reference wavelength is designed and fabricated. It is composed of a transmission type diffraction grating (spatial density 300 line/mm), a rectangular N-BK7 prism (apex angle 30 degree), NIR filter(cutoff wavelength 720 nm), an imaging convex lens(focal length 50 mm F1.8) and an IR modified DSLR camera (Canon EOS40D) of Si optical area sensor ($3,888{\times}2,592$ pixels, pixel size $5.710{\mu}m$). "In-band reference wavelength function" is implemented using non-dispersive 0th diffraction order optical beam. The NIR grism spectrometer is tested in a laboratory using a halogen lamp and a Neon lamp. And the spectrometer is used in an astronomy field for obtaining the planet Jupiter NIR spectrum. In-band reference wavelength i.e. un-deviation wavelength is 846 nm, an wavelength resolution is 0.3027 nm/pixel, an wavelength resolving power is 2,794 and an wavelength range is 650~1,000 nm.

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor (RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계)

  • Hong, Young-Gee;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.286-295
    • /
    • 2021
  • A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

Transparent Near-infrared Absorbing Dyes and Applications (투명 근적외선 흡수 염료 및 응용 분야)

  • Hyocheol Jung;Ji-Eun Jeong;Sang-Ho Lee;Jin Chul Kim;Young Il Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.207-212
    • /
    • 2023
  • Near-infrared (NIR) absorbing dyes have been applied to various applications such as optical filters, biotechnology, energy storage and conversion, coating additive, and traditionally information-storage materials. Because image sensors used in cellphones and digital cameras have sensitivity in the NIR region, the NIR cut-off filter is essential to achieving more clear images. As energy storage and conversion have been important, diverse NIR absorbing materials have been developed to extend the absorption region to the NIR region, and NIR absorbing materials-based research has proceeded to improve device performances. Adding NIR-absorbing dye with a photo-thermal effect to a self-healable coating system has been attractive for future mobility technology, and more effective self-healing properties have been reported. In this report, the chemical structures of representative NIR-absorbing dyes and state of the art research based on NIR-absorbing dyes are introduced.