DOI QR코드

DOI QR Code

Optical Design of a Modified Catadioptric Omnidirectional Optical System for a Capsule Endoscope to Image Simultaneously Front and Side Views on a RGB/NIR CMOS Sensor

RGB/NIR CMOS 센서에서 정면 영상과 측면 영상을 동시에 결상하는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계의 광학 설계

  • Hong, Young-Gee (Department of Photonics and Sensors, Graduate School, Hannam University) ;
  • Jo, Jae Heung (Department of Photonics and Sensors, Graduate School, Hannam University)
  • 홍영기 (한남대학교 대학원 광.센서 공학과) ;
  • 조재흥 (한남대학교 대학원 광.센서 공학과)
  • Received : 2021.11.05
  • Accepted : 2021.11.24
  • Published : 2021.12.25

Abstract

A modified catadioptric omnidirectional optical system (MCOOS) using an RGB/NIR CMOS sensor is optically designed for a capsule endoscope with the front field of view (FOV) in visible light (RGB) and side FOV in visible and near-infrared (NIR) light. The front image is captured by the front imaging lens system of the MCOOS, which consists of an additional three lenses arranged behind the secondary mirror of the catadioptric omnidirectional optical system (COOS) and the imaging lens system of the COOS. The side image is properly formed by the COOS. The Nyquist frequencies of the sensor in the RGB and NIR spectra are 90 lp/mm and 180 lp/mm, respectively. The overall length of 12 mm, F-number of 3.5, and two half-angles of front and side half FOV of 70° and 50°-120° of the MCOOS are determined by the design specifications. As a result, a spatial frequency of 154 lp/mm at a modulation transfer function (MTF) of 0.3, a depth of focus (DOF) of -0.051-+0.052 mm, and a cumulative probability of tolerance (CPT) of 99% are obtained from the COOS. Also, the spatial frequency at MTF of 170 lp/mm, DOF of -0.035-0.051 mm, and CPT of 99.9% are attained from the front-imaging lens system of the optimized MCOOS.

RGB/NIR CMOS 센서를 사용하여 가시광에서의 정면 시야각과 가시광(RGB) 및 근적외선(near-infrared, NIR)에서의 측면 시야각을 갖는 캡슐 내시경용 개선된 반사굴절식 전방위 광학계(modified catadioptric omnidirectional optical system, MCOOS)를 설계한다. 전방 시야각 내의 영상은 반사굴절식 전방위 광학계(catadioptric omnidirectional optical system, COOS)의 부경 뒤에 배치된 3개의 추가된 렌즈와 COOS의 결상 렌즈계로 구성된 MCOOS의 전방 결상 렌즈계로 결상한다. 측면 영상은 COOS로부터 얻어진다. 이 센서에 대한 가시광과 근적외선에서의 나이퀴스트 주파수는 각각 90 lp/mm와 180 lp/mm이다. 설계 사양에서 전장길이, F-수, 전방과 측면 반화각은 각각 12 mm, 3.5, 70°, 50°-120°로 결정하였다. MCOOS의 COOS에 대한 변조전달함수 0.3에서의 공간주파수, 초점심도, 가시광과 근적외선 영역에서의 공차에 따른 누적 확률은 각각 154 lp/mm, -0.051-+0.052 mm, 99%이다. MCOOS의 정면 결상광학계의 변조전달함수 0.3에서의 공간주파수, 초점 심도, 가시광 영역에서 공차에 따른 누적 확률은 각각 170 lp/mm, -0.035-0.051 mm, 99.9%이다.

Keywords

References

  1. G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, "Wireless capsule endoscopy," Nature 405, 417 (2000).
  2. M. Keuchel, F. Hagenmuller, and H. Tajiri, Video Capsule Endoscopy: A Reference Guide and Atlas (Springer, Berlin, Germany, 2014), Chapter 1.
  3. M. R. Basar, F. Malek, K. M. Juni, M. S. Idris, and M. I. M. Saleh, "Ingestible wireless capsule technology: A review of development and future indication," Int. J. Antennas Propag. 2012, 807165 (2012).
  4. A. Mussetto, L. Fuccio, S. Dari, S. Gasperoni, F. Cantoni, M. L. Brancaccio, O. Triossi, and T. Casetti, "MiroCamTM capsule for obscure gastrointestinal bleeding: a prospective, single centre experience," Dig. Liver Dis. 45, 124-128 (2013). https://doi.org/10.1016/j.dld.2012.08.016
  5. D. R. Cave, D. E. Fleischer, J. A. Leighton, D. O. Faigel, R. I. Heigh, V. K. Sharma, C. J. Gostout, E. Rajan, K. Mergener, A. Foley, M. Lee, and K. Bhattacharya, "A multicenter randomized comparison of the endocapsule and the Pillcam SB," Gastrointest. Endosc. 68, 487-494 (2008). https://doi.org/10.1016/j.gie.2007.12.037
  6. Z. Liao, R. Gao, F. Li, C. Xu, Y. Zhou, J.-S. Wang, and Z.-S. Li, "Fields of applications, diagnostic yields and findings of OMOM capsule endoscopy in 2400 Chinese patients," World J. Gastroenterol. 16, 2669-2676 (2010). https://doi.org/10.3748/wjg.v16.i21.2669
  7. R. Koprowski, "Overview of technical solutions and assessment of clinical usefulness of capsule endoscopy," Biomed. Eng. Online 14, 111 (2015). https://doi.org/10.1186/s12938-015-0108-3
  8. M. Ou-Yang and W.-D. Jeng, "Design and analysis of radial imaging capsule endoscope (RICE) system," Opt. Express 19, 4369-4383 (2011). https://doi.org/10.1364/OE.19.004369
  9. T. S. Moon and J. H. Jo, "Optical design of a subminiature catadioptric omnidirectional optical system with an LED illumination system for a capsule endoscope," Korean J. Opt. Photon. 32, 68-78 (2021). https://doi.org/10.3807/KJOP.2021.32.2.068
  10. M.-J. Sheu, C.-W. Chiang, W.-S. Sun, J.-J. Wang, and J.-W. Pan, "Dual view capsule endoscopic lens design," Opt. Express 23, 8565-8575 (2015). https://doi.org/10.1364/OE.23.008565
  11. A. Moglia, A. Menciassi, M. O. Schurr, and P. Dario, "Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems," Biomed. Microdevices 9, 235-243 (2007). https://doi.org/10.1007/s10544-006-9025-3
  12. K. Iseki, M. Tatsuta, H. Iishi, N. Sakai, H. Yano, and S. Ishiguro, "Effectiveness of the near-infrared electronic endoscope for diagnosis of the depth of involvement of gastric cancers," Gastrointest. Endosc. 52, 755-762 (2000). https://doi.org/10.1067/mge.2000.110455
  13. R. C. Benson and H. A. Kues, "Fluorescence properties of indocyanine green as related to angiography," Phys. Med. Biol. 23, 159-163 (1978). https://doi.org/10.1088/0031-9155/23/1/017
  14. Z.-X. Ma, X.-Y. Li, Z.-G. Ren, and N.-Q. Chu, "Design of near infrared continuous zoom optical system," in Proc. IEEE 5th Optoelectronics Global Conference (Shenzhen, China, Sept. 2020), pp. 52-56.
  15. J.-g. Kang, J. M. Ryu, and J. H. Jo, "Design of IR omnidirectional optical system for night vision and surveillance of defense and safety," Proc. SPIE 9451, 94511Y (2015). https://doi.org/10.1117/12.2176886
  16. K. Lee, J. G. Kang, J. H. Jo, and J. M. Ryu, "Optical design of a catadioptric omnidirectional LWIR vision system with F/1.4 and a field of view of 30°-110° and analysis of its tolerance and athermalization," New Phys.: Sae Mulli 67, 754-764 (2017). https://doi.org/10.3938/NPSM.67.754
  17. A. W. Tronnier, "Four-component gauss-type photographic objective of high lighttransmitting capacity," U.S. Patent 2627204A (1953).
  18. Medtronic, "PillCamTM SB 3 Capsule Specifications," (Medtronic), https://www.medtronic.com/covidien/en-us/products/capsuleendoscopy/pillcam-sb-3-system.html (Accessed date: 2021 August 4).