• 제목/요약/키워드: NIOSH method

검색결과 122건 처리시간 0.023초

국내 정부출연연구기관 및 대학교 실험실 공기 오염물질 농도 및 환기시스템 평가 (Evaluation of Air Contaminants Concentrations and Ventilation Systems in Governmental Agency and University Laboratories)

  • 하주현;신용철;이현석;;이광용;이병규
    • 한국산업보건학회지
    • /
    • 제20권1호
    • /
    • pp.63-69
    • /
    • 2010
  • This study was conducted to compare the concentration of various air contaminants in nine different laboratories during routine activities. Volatile organic compounds (VOC) were sampled and analyzed using NIOSH Method 1500 and asbestos fibers were sampled and analyzed using NIOSH Method 9002 and 7400. Detectable levels of acetone, toluene and ethanol were found in all the laboratories and xylene and n-hexane were detected in eight of the nine laboratories. All the VOC concentrations were well below the Korean Ministry of Labor's Exposure Limit and American Conference of Governmental Industrial Hygienists' (ACGIH) Threshold Limit Values (TLVs). Total VOC concentrations at the university laboratories were significantly higher than those at governmental agency laboratories. Airborne fiber concentrations were below 0.01 fibers/cc, while the concentration of chrysotile was 2% in insulation materials sprayed on the ceiling of one laboratory. While all the governmental agency laboratories (n=4) had fume hoods, two out of the five university laboratories did not have fume hoods. The capture velocity of half of the fume hoods were below the maintenance standard(0.4 m/sec). In conclusion, the study suggests that the current controls in place at both university and government agency laboratories are not sufficient in limiting exposure to harmful chemicals to non-detectable levels, though they appear to be adequate in protecting workers to levels below applicable occupational exposure limits. The study also suggests that researchers working in university laboratories may be exposed to greater levels of contaminant than those working in government agency laboratories.

Charcoal Tube에 의(依)한 작업환경중(作業環境中) Toluene 함량(含量)에 관(關)한 연구(硏究) (Toluene Determination in Workplace by Charcoal Tube Method)

  • 김형석;구도서;박양원;이정환
    • Journal of Preventive Medicine and Public Health
    • /
    • 제16권1호
    • /
    • pp.193-198
    • /
    • 1983
  • In the determination of organic solvents in workplaces direct reading tube method have been used in Korea for decades. But this method is less accurate and couldn't measure TWA(Time Weighted Average) for 8 hours. Authors tried to detect Toluene concentration in S factory by using charcoal tube according to NIOSH method. The concentration was 158.8ppm. We propose this charcoal tube method should be substituted to get accurate results and to protect employee in workplaces related with solvents.

  • PDF

석면 분석방법에 대한 고찰 (Review on asbestos analysis)

  • 함승헌;황성호;윤충식;박동욱
    • 한국산업보건학회지
    • /
    • 제19권3호
    • /
    • pp.213-232
    • /
    • 2009
  • This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.

조선소 용접작업자들의 총용접흄과 호흡성분진농도 비교연구 (A Comparison Study on the Concentration of Total Welding Fume and Respirable Particulate Mass for Welding Workers of a Shipbuilding)

  • 강용선;심상효;이송권;빈성오;최은석
    • 한국환경보건학회지
    • /
    • 제33권4호
    • /
    • pp.276-282
    • /
    • 2007
  • The purpose of this study is to assess the accurate state of the following: total welding fumes versus welding fumes in the air, respirable particulate mass, and exposure of dockyard welders to heavy metals. In addition, this study provides basic data for proposing improvements to create efficient and appropriate welding environments and to prevent occupational diseases. The subjects of this study were 94 laborers who worked at the block construction sites of large-scale dockyards located in Gyeongnam Province from March 2005 to June 2005. In order to collect samples on total welding fumes in the air and respirable particulate mass from the welders, Methods 0500 and 0600, established by the National Institute for Occupational Safety and Health (NIOSH), were used. The metals within the welding fumes were also analyzed using Inductively Coupled Plasma (ICP) under Method 7300 from NIOSH. The results of this research are summarized below. The geometric mean concentration of total welding fumes and that of respirable particulate mass were $4.11\;mg/m^3\;and\;3.53\;mg/m^3$, respectively. As a result of comparing the two measurement methods, there were significant differences (p<0.05) between the two groups for Ca, Cu, Cr, and Ni; however, there were no differences in Fe, Mg, Zn, Mg, Pb, and Cd. As a result of the analysis, the correlation between Mn and the concentration of heavy metals in the total welding fumes and respirable particulate mass was found to be -0.29, a significant negative correlation. The correlation between other heavy metals, however, was low. Finally, in the same total welding fumes, the correlation of Fe and Mg was high.

김해시 자동차 부품 생산직 근로자의 근골격계 증상 유병률과 관련요인 (Musculoskeletal Symptoms Prevalence and Its Related Factors of Workers in Manufacturing Industry of Automobile Parts in Gimhae City)

  • 박수형;문덕환;김지혁
    • 대한정형도수물리치료학회지
    • /
    • 제19권1호
    • /
    • pp.9-20
    • /
    • 2013
  • Background: This study was conducted to provide preventive measure for the musculoskeletal disorders in automobile parts manufacturing workers. Method: The author surveyed to the musculoskeletal symptoms prevalence and its related factors from 10th to 17th April 2011 with structured self administered questionnaires. 223 out of 225 collected questionnaires were used for final analysis, excluding 2 questionnaires with no valid response. Based on the diagnostic criteria of NIOSH (National Institute for Occupational and Health), an investigation was made into the prevalence of musculoskeletal symptoms as well as into the factors related to individual items. Results: The prevalence of musculoskeletal symptoms according to the criteria of NIOSH was the highest in the shoulder (52.9%), followed by the neck (39.%), the hand/wrist (35%), the waist (29.6%), the arm/elbow (24.7%), and the leg/food (23.8%). One-way analysis showed that among general characteristics, age was the musculoskeletal risk factor with the greatest effect. Whereas among work-related characteristics, significant risk factor didn't find. Yet it was shown that among ergonomic work postures, high degree of musculoskeletal risk was shown by the posture involving frequent and repetitive movement of the arm and the hand/wrist and also by the posture involving standing for a long time. Multiple regression analysis showed that musculoskeletal risk was 1.795 times higher in those age 50 and over than in those under age 50; 1.67 times higher in the high risk stress group than in the low risk stress group; and 1.131 higher in the group involving the repetitive use of the hand/arm than in the other groups (p<.05). Conclusion: The prevalence and stress score of automobile parts manufacturing workers were higher than other occupation workers. Among general characteristics, drinking and smoking were shown to be related to stress score; while age was shown to have significant effect on musculoskeletal risk.

  • PDF

열광학적 분석 프로토콜에 의한 유기탄소와 원소탄소 측정값 비교 (Comparison of OC and EC Measurement Results Determined by Thermal-optical Analysis Protocols)

  • 김효선;정진상;이진홍;이상일
    • 한국대기환경학회지
    • /
    • 제31권5호
    • /
    • pp.449-460
    • /
    • 2015
  • Carbonaceous aerosol is generally classified into OC (organic carbon) and EC (elemental carbon) by thermal optical analysis. Both NIOSH (National institute of occupational safety and health) with high temperature (HighT) and IMPROVE-A (Interagency monitoring of protected visual environments) with low temperature (LowT) protocols are widely used. In this study, both protocols were applied for ambient $PM_{2.5}$ samples (Daejeon, Korea) in order to underpin differences in OC and EC measurements. An excellent agreement between NIOSH and IMPROVE-A protocol was observed for TC (total carbon). However, significant differences between OC and EC appeared and the differences were larger for EC than OC. The main differences between two protocols are temperature profile and charring correction method. For the same charring correction method, HighT_OC was 10% higher than LowT_ OC, while HighT_EC was 15% and 33% lower than LowT_EC for TOT (thermal-optical transmittance) and TOR (thermal-optical reflectance), respectively. This difference may be caused by the temperature of OC4 in He step and possibly difference in POC (pryorilized OC) formation. For the same temperature profile, OC by TOT was about 26% higher than that by TOR. In contrast, EC by TOT was about 50% lower than that by TOR. POC was also dependent on both temperature profile and the charring correction method, showing much distinctive differences for the charring correction method (i.e., POC by TOT to POC by TOR ratio is about 2). This difference might be caused by different characteristics between transmittance and reflectance for monitoring POC formation within filters. Results from this study showed that OC and EC depends on applied analysis protocol as shown other studies. Because of the nature of the thermal optical analysis, it may not be possible to have an absolute standard analysis protocol that is applicable for any ambient $PM_{2.5}$. Nevertheless, in order to provide consistent measurement results for scientists and policy makers, future studies should focus on developing a harmonized standard analysis protocol that is suitable for a specific air domain and minimizes variations in OC and EC measurement results. In addition, future elaborate studies are required to find and understand the causes of the differences.

확산포집기를 이용한 공기 중 유기용제 포집에 관한 연구 (A Study on Organic Solvent Measurement Using Diffusive Sampler)

  • 박미진;윤충식;백남원
    • 한국산업보건학회지
    • /
    • 제4권2호
    • /
    • pp.208-223
    • /
    • 1994
  • The purpose of this study was to evaluate the efficiency of diffusive(or passive) sampler in measuring airbone organic solvents. Diffusive samplers are generally simple in construction and do not require power for operation. The efficiency of the diffusive samplers has not sufficiently been investigated in Korea. Three types of samplers were studied in this study. The sampling and analytical results by passive samplers were compared with results by charcoal tube method recommended by NIOSH(National Institute for Occupational Safty and Health). The following characteristics are identified and studied as critical to the performance passive monitors; recovery, reverse diffusion, storage stability, accuracy and precision, face velocity and humidity, n-Hexane, TCE(trichloroethylene) and toluene were used as test vapors. A dynamic vapor exposure system consisting of organic vapor generator and sampling chamber for evaluating diffusive samplers are made. The results of the study are summarized as follows. 1. NIOSH recommands that the overall accuracy of a sampling method in the range of 0.5 to 2.0 times the occupational health standard should be ${\pm}25$ percent for 95 percent confidence level. Among three types of diffusive samplers, sampler A has permeation membrane and samplers Band C have diffusive areas, samplers A and B met the criterion that overall accuracy for 95% confidence level of the samplers were within ${\pm}25$ percent of the reference value. Sampler C had overall accuracy ${\pm}9.6%$ and ${\pm}11.8%$ in hexane and TCE, respectively. The concentration of toluene was overestimated in sampler C with overall accuracy of ${\pm}43.9%$. 2. The desorption efficiencies of diffusive samplers were 96-107%. 3. There was no significant sampe loss during four weeks of storage both with and without refrigeration. 4. There was no significant reverse diffusion, when the samplers were exposure to clean air for 2 hours after sampling for 2 hours at the level of 2 TLY. 5. In case of 8 hours sampling, relative differences(RD) of concentrations between charcoal tube method and diffusive method were 15-39%, 13-46%, and 4-35% for sampler A, B and C, respectively. The performance was poor in 8 hours sampling for multiple substance monitors. 6. At high velocity(100 cm/sec), samplers B and C overestimated the concentrations of organic vapors, and sampler A with permeation membrance gave better results. 7. At 80% relative humidity, samplers showed no siginificant effect. Low humidity also did not affect the diffusive samplers.

  • PDF

들기작업 설계와 평가를 위한 요천추의 Compressive Force 예측모형 비교연구 (Comparison of Three Existing Methods for Predicting Compressive Force on the Lumbosacral Disc)

  • 기도형;정민근
    • 대한산업공학회지
    • /
    • 제21권4호
    • /
    • pp.581-591
    • /
    • 1995
  • The main objective of this study is to compare three representative methods predicting compressive forces on lumbosacral disc : LP-based method, double LP-based method and EMG-assisted method. Two subjects simulated lifting tasks performed in the refractories industry, in which vertical and horizontal distance, and weight of load were varied. To calculate the L5/S1 compressive forces, EMG signals from six trunk muscles were measured and postural data and locations of load were recorded using the Motion Analysis System. The EMG-assisted model was shown to reflect well all three factors considered here. On the other hand, the compressive forces of the LP-based model and the double LP-based model were only significantly affected by weight of load. In addition, lowly positive correlation was observed between compressive forces of the EMG-assisted model and lifting index(LI) of 1991 NIOSH lifting equation. From this results, it can be concluded that compressive forces on L5/S1 by the EMG-assisted method should be used as biomechanical criterion in order to evaluate risk of jobs precisely, and LI can not evaluate risk of lifting tasks fully.

  • PDF

용접흄 충 금속함량 변화에 관한 연구 (A Study on the Content Variation of Metals in Welding Fumes)

  • 윤충식;박동욱;박두용
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.

요배근력 촉정 및 L_5/S_1$ 요추부하 평가에 관한 연구 (A Study on the Measurement of Back Power and the Evaluation of Compression Force at the L_5/S_1$)

  • 양성환;김대성;박범
    • 한국안전학회지
    • /
    • 제12권3호
    • /
    • pp.161-165
    • /
    • 1997
  • Recently, industrial accidents have been getting great damage to an enterprise management directly and indirectly, the industrial injuries of conventional type are decreasing : on the other hand, musculoskeletal injuries are trending to a rapid increase. This shows that most of carrying works have been performing in almost all production process and convey objects, machine equipment and work method. Then, they are made by unfitted design which doesn't consider physical condition of workers, so it causes them to bring about forceful motion. In this paper, it was used NIOSH standard the data of spot. The ergonomic design of machine equipment and the evaluation of biomechanical compression force at theL_5/S_1$and back power, intend to provide the basis which can be applied, compared, and analyzed between before process improvement and after.

  • PDF