• Title/Summary/Keyword: NF-κB

Search Result 687, Processing Time 0.032 seconds

Inhibitory Effect of the Rodgersia podophylla Leave Extracts against Cell Proliferation through Activation of NF-κB in Human Colorectal Cancer Cells (도깨비부채 잎 추출물의 NF-κB 활성화를 통한 대장암 세포 HCT116에 대한 세포생육 억제활성)

  • Kim, Jeong Dong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.460-466
    • /
    • 2020
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of leaves from Rodgersia podophylla against human colorectal cancer cells, HCT116. RPL dose-dependently decreased the cell viability through RPL-induced apoptosis in HCT116 cells. RPL induced inactivation the nuclear factor κB(NF-κB) through blocking IκB-α degradtion and P65 nuclear accumulation. The inhibition of GSK3β by LiCl attenuated RP-L-mediated NF-κB signaling inactivation. In addition, RP-L induced GSK3β activation. Based on these findings, RPL may be a potential candidate for the development of chemopreventive or therapeutic agents for human colorectal cancer.

Anisomycin protects against sepsis by attenuating IκB kinase-dependent NF-κB activation and inflammatory gene expression

  • Park, Gyoung Lim;Park, Minkyung;Min, Jeong-Ki;Park, Young-Jun;Chung, Su Wol;Lee, Seon-Jin
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.545-550
    • /
    • 2021
  • Anisomycin is known to inhibit eukaryotic protein synthesis and has been established as an antibiotic and anticancer drug. However, the molecular targets of anisomycin and its mechanism of action have not been explained in macrophages. Here, we demonstrated the anti-inflammatory effects of anisomycin both in vivo and in vitro. We found that anisomycin decreased the mortality rate of macrophages in cecal ligation and puncture (CLP)- and lipopolysaccharide (LPS)-induced acute sepsis. It also declined the gene expression of proinflammatory mediators such as inducible nitric oxide synthase, tumor necrosis factor-α, and interleukin-1β as well as the nitric oxide and proinflammatory cytokines production in macrophages subjected to LPS-induced acute sepsis. Furthermore, anisomycin attenuated nuclear factor (NF)-κB activation in LPS-induced macrophages, which correlated with the inhibition of phosphorylation of NF-κB-inducing kinase and IκB kinase, phosphorylation and IκBα proteolytic degradation, and NF-κB p65 subunit nuclear translocation. These results suggest that anisomycin prevented acute inflammation by inhibiting NF-κB-related inflammatory gene expression and could be a potential therapeutic candidate for sepsis.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Anti-inflammatory and antioxidant effects of Barringtonia augusta Kurz extract (Barringtonia augusta Kurz 추출물의 항염증 및 항산화 효능 평가)

  • Ryu, Soo Ho;Kim, Min Jeong;Bach, Tran The;Jung, Sung Keun
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.154-159
    • /
    • 2021
  • Barringtonia augusta Kurz is a species of the genus Barringtonia. Although several studies have analyzed the biological activity of B. racemosa Roxb and B. acutangula, the anti-inflammatory and antioxidant effects of B. augusta extract (BKE) remain unclear. Therefore, in this study, we investigated the anti-inflammatory and antioxidant effects of BKE using lipopolysaccharide (LPS) and RAW 264.7. BKE suppressed LPS-induced nitric oxide (NO) and inducible NO synthase expression without affecting RAW 264.7 cell viability. Additionally, BKE showed 2,2-Diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging capacities and inhibited LPS-induced reactive oxygen species production in RAW 264.7 cells. BKE also suppressed LPS-induced phosphorylation of IκB kinase and nuclear factor kappa-B (NF-κB) and p65 translocation from the cytosol to the nucleus in RAW 264.7 cells. These results suggest that BKE is a possible novel material that exerts beneficial antioxidant and anti-inflammatory effects through the inhibition of NF-κB signaling pathways.

Anti-inflammatory Effects of Tanghwajitong-san through Inhibition of NF-κB and MAPK (탕화지통산(湯火止痛散)의 NF-κB 및 MAPK 억제를 통한 항염증 효과)

  • Min Jung Ko;Seon Young Jee;Min Hwangbo
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.36 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • Objectives : The purpose of this study was to evaluate the anti-inflammatory effect of Tanghwajitongsan(THJTS) through inhibition of NF-κB and MAPK. Methods : We evaluated cell survival rate by MTT assay, NO production by nitrite content in the culture medium. We quantified TNF-α, IL-1β, IL-6 and PGE2 of the cultured supernatant by ELISA. And we evaluated the effect of THJTS on protein expression of NF-κB, MAPK, iNOS and COX-2 by Western blot analysis. THJTS ameliorates LPS-activated alterations in protein expression of NF-κB, p-38, iNOS and COX-2 and production of NO, pro-inflammatory cytokines and PGE2. Also, THJTS ameliorates LOX, PGN and FLA-activated alterations in protein expression of NO, iNOS. THJTS ameliorates only PGN-activated alterations in protein expression of COX-2. Results : THJTS ameliorates LPS-activated alterations in protein expression of NF-κB, p-38, iNOS and COX-2 and production of NO, pro-inflammatory cytokines and PGE2. Also, THJTS ameliorates LOX, PGN and FLA-activated alterations in protein expression of NO, iNOS. THJTS ameliorates only PGN-activated alterations in protein expression of COX-2. Conclusions : This study can provide scientific evidence for the anti-inflammatory effects and underlying mechanisms of THJTS.

Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells

  • Yun, Chawon;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.637-642
    • /
    • 2021
  • In this study, we investigated whether eriodictyol exerts an effect on the production and gene expression of MUC5AC mucin in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with eriodictyol for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The effect of eriodictyol on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated. Eriodictyol suppressed the MUC5AC mucin production and gene expression induced by PMA via suppression of inhibitory kappa Bα degradation and NF-κB p65 nuclear translocation. These results suggest that eriodictyol inhibits mucin gene expression and production in human airway epithelial cells via regulation of the NF-κB signaling pathway.

Immune-Enhancing Effects of Green Lettuce (Lactuca sativa L.) Extracts through the TLR4-MAPK/NF-κB Signaling Pathways in RAW264.7 Macrophage Cells

  • Seo, Hyun-Ju;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.3
    • /
    • pp.183-193
    • /
    • 2020
  • Recently, as a natural substance has been emphasized interest in research to enhance the immune function. Green lettuce (Lactuca sativa L.) is a popular vegetable used fresh and it contains various phytochemicals and antioxidant compounds, and has been reported to have various physiological activities such as antibacterial, antioxidant, antitumor and anti-mutagenic. However, only a few studies have investigated on the mechanism of action of immune-enhancing activity of lettuce. Therefore, in this study, the immunomodulatory activities and potential mechanism of action of Green lettuce extracts (GLE) were evaluated in the murine macrophage cell line RAW264.7. GLE significantly increased NO levels by RAW264.7 cells, as well as expressions of immunomodulators such as iNOS, COX-2, IL-1β, IL-6, IL-12, TNF-α and MCP-1. Although GLE activated ERK1/2, p38, JNK and NF-κB, GLE-mediated expressions of immunomodulators was dependent on p38, JNK and NF-κB. In addition, TLR4 inhibition blocked GLE-mediated expressions of immunomodulators and activation of p38, JNK and NF-κB. Taken together, these results demonstrated that TLR4-MAPK/NF-κB signalling pathways participated in GLE-induced macrophage activation and GLE could be developed as a potential immunomodulating functional food.

A Novel Synthetic Compound, YH-1118, Inhibited LPS-Induced Inflammatory Response by Suppressing IκB Kinase/NF-κB Pathway in Raw 264.7 Cells

  • Yun, Chang Hyun;Jang, Eun Jung;Kwon, Soon Cheon;Lee, Mee-Young;Lee, Sangku;Oh, Sei-Ryang;Lee, Hyeong-Kyu;Ahn, Kyung-Seop;Lee, Ho-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • For the search of a potent first-in-class compound to inactivate macrophages responsible for inflammatory responses, in the present study, we investigated the anti-nflammatory effects of YH-1118, a novel synthetic compound, in a lipopolysaccharide (LPS)-stimulated mouse macrophage cell line, Raw 264.7. YH-1118 inhibited LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) expression at both the protein and mRNA levels. The suppression of LPS-induced iNOS expression by YH-1118 was mediated via nuclear factor kappa B (NF-κB), but not activator protein-1 (AP-1) transcription factor. This was supported by the finding that YH-1118 attenuated the phosphorylation of inhibitor of κBα (IκBα) and nuclear translocation and DNA binding activity of NF-κB. Through the mechanisms that YH-1118 inhibited the activation of IκB kinases (IKKs), upstream activators of NF-κB, or p38 MAPK, YH-1118 significantly suppressed LPS-induced production of pro-inflammatory cytokines, tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6 (p < 0.05). In conclusion, our results suggest that YH-1118 inhibits LPS-induced inflammatory responses by blocking IKK and NF-κB activation in macrophages, and may be a therapeutic candidate for the treatment of various inflammatory diseases.

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Effects of troxerutin on vascular inflammatory mediators and expression of microRNA-146a/NF-κB signaling pathway in aorta of healthy and diabetic rats

  • Che, Xing;Dai, Xiang;Li, Caiying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.395-402
    • /
    • 2020
  • This study has investigated the effect of a potent bioflavonoid, troxerutin, on diabetes-induced changes in pro-inflammatory mediators and expression of microRNA-146a and nuclear factor-kappa-B (NF-κB) signaling pathway in aortic tissue of type-I diabetic rats. Male Wistar rats were randomly divided into four groups (n = 6/each): healthy, healthy-troxerutin, diabetic, and diabetic-troxerutin. Diabetes was induced by streptozotocin injection (60 mg/kg; intraperitoneally) and lasted 10 weeks. Troxerutin (150 mg/kg/day) was administered orally for last month of experiment. Inflammatory cytokines IL-1β, IL-6, and TNF-α, as well as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM), cyclooxygenase-II (COX-II), and inducible-nitric oxide synthase (iNOS) were measured on aortic samples by enzyme-linked immunosorbent assay. Gene expressions for transcription factor NF-κB, interleukin-1 receptor-associated kinase-1 (IRAK-1), TNF receptor-associated factor-6 (TRAF-6), and microRNA-146a were determined using real-time polymerase chain reaction. Ten-week diabetes significantly increased mRNA levels of IRAK-1, TRAF-6, NF-κB, and protein levels of cytokines IL-1β, IL-6, TNF-α, adhesion molecules ICAM-1, VCAM, and iNOS, COX-II, and decreased expression of microRNA-146a as compared with healthy rats (p < 0.05 to p < 0.01). However, one month treatment of diabetic rats with troxerutin restored glucose and insulin levels, significantly decreased expression of inflammatory genes and pro-inflammatory mediators and increased microRNA level in comparison to diabetic group (p < 0.05 to p < 0.01). In healthy rats, troxerutin had significant reducing effect only on NF-κB, TNF-α and COX-II levels (p < 0.05). Beside slight improvement of hyperglycemia, troxerutin prevented the activation of NF-κB-dependent inflammatory signaling in the aorta of diabetic rats, and this response may be regulated by microRNA-146a.