• Title/Summary/Keyword: NES 713

Search Result 15, Processing Time 0.021 seconds

The Experimental Study on the Toxic Gases Released from the Floor Finishing Materials in Entertainment Service Industry Buildings (다중이용시설 바닥마감재의 연소가스 독성평가에 관한 실험 연구)

  • 강성동;이창우;현성호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.14-21
    • /
    • 2002
  • The several floor finishing materials that widely used in entertainment service industry buildings were evaluated according to the method of NES 713. Also, toxic gases of floor finishing materials in combustion without air flow rate were checked as concentration of fire gases variation according to time using gas analyzer. We had estimated the smoke hazard of floor finishing materials in fire. As results of gas analyses using the method of NES 713, toxic index of samples was estimated range of 2~9.7. Therefore, a large amount of toxic gases will release from a floor finishing materials fire and connoted great smoke hazard in fire.

Experiments on the Behavior of Underground Utility Cable in Fire (지하구 케이블의 연소특성 실험)

  • 박승민;김운형;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.75-80
    • /
    • 2002
  • In this paper, some experiments of a heat release rate and toxicity for underground utility 22.9kv cable in fire was conducted and analysed applying plume equation and smoke chamber test separately, A 22.9 ㎸ power cable is selected for testing heat release in ISO 9705 geometry and toxicity production is measured with NES 713 (British-Naval Engineering Standard)test. In test results, Cable heat release reached about 60 ㎾ above 1.2 m from heptane pan and CO generated lethal concentration under 30 min. exposure condition.

A Study on the Toxic Gases and Smoke Hazard of PASCON Trough (파스콘 트로프의 연기유독성에 관한 연구)

  • Lee, Chang-Woo;Hyun, Seong-Ho;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.20 no.2 s.62
    • /
    • pp.1-7
    • /
    • 2006
  • The aim of the research is to estimate the effect of smoke and combustion gases on humane body indirectly through measuring the toxicity of those. For this purpose, the toxic index of smoke and combustion gases was investigated by smoke hazard test and analysis of smoke which were conducted by KS F 2271 and NES 713 method respectively. It i s proved by KS F 2271 method that PASCON trough is suitable to the testing standard of interior material and construction of building. In addition, it is identified by NES 713 method that combustion gases occurring in PASCON product were only carbon dioxide and carbon monoxide, and the smoke index of those was 0.944. This value means that the hazard effect of smoke gases on humane ! body can possibly happens when exposed to the smoke gases for more than 30 min. In aspect of the domestic situation that have not regulated the hazard estimation and the emissions of smoke when the flame retarding ability of the products have been requested, the toxic indexes of PASCON products are comparatively low.

Hazard Assessment of Combustion Gases from Interior Materials (주요 건축 내장재의 연소가스 유해성 평가)

  • Seo, Hyun Jeong;Son, Dong Won
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.49-56
    • /
    • 2015
  • Toxic gases from five types of interior building materials were investigated according to Naval Engineering Standard (NES) 713. The materials were plywood, indoor wall coverings (wood wall plate members and pine wood), reinforced Styrofoam insulation, laminate flooring, and PVC. Specimens were measured using an NES 713 toxicity test apparatus to analyze the hazardous substances in combustion gas from the materials. We used the US Department of Defense standard (MIL-DTL, Military Standard) to calculate the toxicity index of the combustion gas. Emissions of $CO_2$ from all specimens did not exceed the NES 713 limit of 100,000 ppm. The amount of CO gas emissions from reinforced Styrofoam insulation was 6,098 ppm. 25 ppm and 49 ppm of formaldehyde were released from the reinforced Styrofoam insulation and PVC flooring, respectively. These values were less than the limit of 400 ppm. The highest emissions were from $NO_X$ emitted by plywood and were above the limit of 250 ppm. The toxicity index of the specimens were calculated as 5.19 for plywood, 4.13 for PVC flooring, 2.35 for reinforced Styrofoam insulation, 2.34 for laminate flooring, and 1.22 for indoor wall coverings (pine wood). Our research helps us to understand the properties of these five interior materials by analyzing the combustion gas and explaining the toxicity of constituents and the toxicity index. Also, it would be useful for giving fundamentals to guide the safe use of interior materials for applications.

A Study on the Toxic Gases Released from Fire Retardant Finishing Materials (가스검지관법에 의한 방염시료의 연소가스 독성평가)

  • Lee, Hae Pyeong;Park, Young Ju;Lim, Suk Hwan;Kim, Jung In
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.195-195
    • /
    • 2011
  • 본 연구는 방염성능시험에 의한 필름 및 도료처리 시료를 대상으로 화재 시 발생하는 연소가스 중의 독성에 대하여 NES 713 방법에 의해 분석하고, 독성지수를 확인함으로써 연소 시 인체에 미치는 영향을 간접적으로 확인해 보고자 하였다. 기존 방염제품 중 필름과 도료처리 그리고 도료처리 후 기간이 경과한 시료의 3가지로 실험군을 구분하였으며, NES 713 방법으로 연소가스를 분석하고 독성지수를 평가하였으며, 추가로 기존의 국내 노출기준과의 비교를 수행하였으며, 국내 NES 713 방법을 활용한 선행연구들을 참조하였다. 발암가능 추정물질인 아크릴로니트릴은 총 18개의 시료에서 검출되었으며, 포름알데히드는 9개의 시료에서 검출되었다. 염화수소와 브롬화수소는 각각 5개의 시료들에서 검출된 반면에 도료처리된 시료에서는 각각 1개만이 검출되었다. 그 외 일산화탄소와 이산화탄소 그리고 질소산화물은 모든 시료에서 공통적으로 검출되었다. 독성지수는 최소 3.5에서 최고 9.4의 값을 갖는 것으로 나타났다. 본 연구에서 수행한 NES 713 분석결과와 독성지수 산출 및 기존 국내 노출기준과의 비교를 수행해 본 결과는 다음과 같았다. 첫째, 현행 국내 기준 상 방염제품의 독성시험 등에 관한 기준이 없고, 둘째, 방염제품에 대한 연소가스 독성 등을 평가한 선행연구가 제한적이라는 점에서 의미가 있을 것으로 사료된다. 하지만 독성지수의 적용이 국내에서 이루어지고 있지 않은 현실에서 산출도나 독성지수의 위해정도를 평가하기 어렵고, 시료의 수량이 총 18개로서 많지 않았다는 점에서 전체 방염제품의 연소가스 독성의 잠재적인 위험성을 추정할 수는 있지만 대표성을 갖기에는 문제점이 있다는 한계성을 벗어날 수 없었다. 따라서 향후 후속 연구에서는 보다 많은 방염제품들을 대상으로 무작위 선정을 통한 연구 설계 및 실험 연구가 수행된다면 보다 객관적이고 대표성을 지닌 연구결과를 도출할 수 있을 것으로 기대한다.

  • PDF

A Toxicity of Interior Upholstery in Apartment Housing (아파트 마감재의 연기 유독성)

  • Ham, Sang-Keun;Kim, Hong;Han, Sang-Bum;Kim, Woon-Hyung
    • Fire Science and Engineering
    • /
    • v.15 no.3
    • /
    • pp.36-43
    • /
    • 2001
  • Several types of widely used interior upholsteries including wallpaper, veneer board and floor cover, were selected to be evaluated by using the method of NES 713 text. Test results indicates that a fire with retardant wallpaper release a large amount of toxic gases when constantly exposed to a fire source. When evaluated in terms of the masses of released gases, the release of Carbon monoxide appears the highest in case of wallpaper fire, while the ratio of CO/Mass loss appears the highest in case of floor cover fire. Therefore, it can be concluded that, a large amount of toxic gas will release from a floor cover fire with even a small quantity of fuel.

  • PDF

The Combustion Gases Toxicity Evaluation of Plastics Material by Colorimetric Gas Detector Tubes (가스검지관법에 의한 플라스틱재료의 연소가스 독성평가)

  • 박영근;김동일;현성호
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.77-84
    • /
    • 2002
  • In this paper, we had analyzed comsbustion gases using a GASTEC colorimetric gas detector tube according to the method of NES 713 in order to combustion gases toxicity evaluation for beads polystyrene foam, extruded polystyrene foam, rigid polyurethane foam, flexible polyurethane foam, flexible polyvinyl chloride pipe, vinyl floor cover, polyethyelene foam(flame retardant untreated) and polyethyelene foam (flame retardant treated) of plastics material. As results of gas analyses by using this method, comsbustion gases producted from small specimens of plastics material had reached fatal to man at 30 minutes exposure time that had possesed toxicity index of more than 1. Toxicity indexes of each specimen were estimated range of 4.3∼179.2, flexible polyvinyl chloride showed the hightest toxicity index at 179.2, and beads polystyrene foams showed the lowest toxicity index at 4.3.

A Toxicity Evaluation on the Toxic Gases Released from Interior Upholstery Fires (실내 마감재의 유독가스 방출에 관한 독성평가)

  • Ham, Sang-Keun;Kim, Hong;Gang, Yeong-Gu;Kim, Dong-Hyeon;Lee, Yeong-Seop
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • The toxic gases released from a fire can be classified as asphyxiants such as carbon monoxide, and irritants such as hydrochloric acid, etc. It is recognized that the combustion characteristic of interior upholstery is one of the important factors to determine the severity of indoor fires. In this study, several of the mostly used interior upholsteries including wallpaper, veneer board, curtain and floor cover, were selected to be evaluated by using the method of NES 713. The toxicity indices of the experimental samples, which indicate their toxic potentials in a fire were lowered in the order of Wallpaper (Flame Retardant) 8.5>Floor Cover(Hard) 4.8>polyurethane 4.3>Floor Cover(Soft) 3.5>PVC 2.8> Veneer Board 2.3> Floor Cover(flame retardant) 2.1>Wallpaper(Promulgation) 1.4>Curtain 0.9. It is concluded that, among all the tested upholsteries, wallpaper (flame retardant) would release the largest quantity of Toxic gases in a fire.

Experimental Study on the Toxicity Characteristics of Non-Class 1E Cables according to Accelerated Deterioration (가속열화에 따른 비안전등급 케이블의 독성특성에 관한 실험적 연구)

  • Jang, Eun-Hui;Kim, Min-Ho;Lee, Min Chul;Lee, Sang-Kyu;Moon, Young-Seob
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.105-113
    • /
    • 2019
  • This study investigates the toxicity characteristics of two Non-Class 1E Cables (For security reasons, we refer to company A and company B) used in nuclear power plants according to the accelerated deterioration period. In accordance with NES 713 test equipment and standards, tests were carried out on non-aged cables and the cables subjected to 20- and 40-year-accelerated-deterioration; each of the cables was further classified into sheath and insulation. The test results showed that the toxicity indices of 20- and 40-year-accelerated-aged cables were higher than those for the non-aged cables, and 20-year-aged cables of both A and B companies showed the highest toxicity indices. This is attributed to the extensive emissions of carbon monoxide and halide gases such as hydrogen chloride and hydrogen bromide. Furthermore, to analyze the toxicity indices of sheath and insulation in detail, the US Department of Defense standard (MIL-DTL) was applied to determine whether the Toxicity index (T.I.) allowance was exceeded, and the results showed that the insulating materials emitted considerably more than the allowable limit.