• Title/Summary/Keyword: NEMA Phantom

Search Result 68, Processing Time 0.035 seconds

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF

Compared Performance of Semiconductor SPECT in Myocardial Perfusion SPECT: Phantom study (범용 신틸레이터 감마카메라와 심근전용 반도체 감마카메라의 성능 비교 연구)

  • Bahn, Young Kag;Hwang, Dong Hoon;Kim, Jung Yul;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.49-53
    • /
    • 2016
  • Purpose Recently, Cadmium-zinc-telluride (CZT) semiconductor myocardial SPECT (Single Photon Emission Computed Tomography) has been used myocardial scintigraphy. In this study, the performance of Semiconductor SPECT and conventional SPECT systems was compared by a comprehensive analysis of phantom SPECT images. Materials and Methods Methods: We evaluated the DSPECT CZT SEPCT (Spectrum-dynamic) and INFINA conventional (GE). Physical performance was compared on reconstructed SPECT images from a phantom. Results For count sensitivity on cardiac phantom images ($counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$), DSPECT had a sensitivity of conventional SPECT. This classification was similar to that of myocardial counts normalized to injected activities from phantom images (respective mean values, $counts{\cdot}sec^{-1}{\cdot}MBq^{-1}$: 195.83 and 52.83). For central spatial resolution: DSPECT, 9.47mm; conventional SPECT, 16.90mm. For contrast-to-noise ratio on the phantom: DSPECT, 4.2; conventional SPECT, 3.6. Conclusion The performance of CZT cameras is dramatically higher than that of conventional SPECT. However, CZT cameras differ in that spatial resolution and contrast-to-noise ratio are better with conventional SPECT, whereas count sensitivity is markedly higher with the DSPECT.

  • PDF

The Evaluation of Denoising PET Image Using Self Supervised Noise2Void Learning Training: A Phantom Study (자기 지도 학습훈련 기반의 Noise2Void 네트워크를 이용한 PET 영상의 잡음 제거 평가: 팬텀 실험)

  • Yoon, Seokhwan;Park, Chanrok
    • Journal of radiological science and technology
    • /
    • v.44 no.6
    • /
    • pp.655-661
    • /
    • 2021
  • Positron emission tomography (PET) images is affected by acquisition time, short acquisition times results in low gamma counts leading to degradation of image quality by statistical noise. Noise2Void(N2V) is self supervised denoising model that is convolutional neural network (CNN) based deep learning. The purpose of this study is to evaluate denoising performance of N2V for PET image with a short acquisition time. The phantom was scanned as a list mode for 10 min using Biograph mCT40 of PET/CT (Siemens Healthcare, Erlangen, Germany). We compared PET images using NEMA image-quality phantom for standard acquisition time (10 min), short acquisition time (2min) and simulated PET image (S2 min). To evaluate performance of N2V, the peak signal to noise ratio (PSNR), normalized root mean square error (NRMSE), structural similarity index (SSIM) and radio-activity recovery coefficient (RC) were used. The PSNR, NRMSE and SSIM for 2 min and S2 min PET images compared to 10min PET image were 30.983, 33.936, 9.954, 7.609 and 0.916, 0.934 respectively. The RC for spheres with S2 min PET image also met European Association of Nuclear Medicine Research Ltd. (EARL) FDG PET accreditation program. We confirmed generated S2 min PET image from N2V deep learning showed improvement results compared to 2 min PET image and The PET images on visual analysis were also comparable between 10 min and S2 min PET images. In conclusion, noisy PET image by means of short acquisition time using N2V denoising network model can be improved image quality without underestimation of radioactivity.

Evaluation of Dosimetry and Image of Very Low Dose CT Attenuation Correction for Pediatric PET/CT: Phantom Study (팬텀을 이용한 소아 PET/CT 검사 시 감쇄보정 CT 선량과 영상 평가)

  • Bahn, Young-Kag;Kim, Jung-Yul;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • Purpose: To evaluate the dosimetry and image of very low does CT attenuation correction for phantom using pediatric PET/CT. Materials and methods: three PET / CT scanners (Discovery STe, BiographTruepoint 40, Discovery 600) as a child-size acrylic phantom and ion chamber dosimeter (Unfous Xi CT, Sweden) using a CT image acquisition parameters (10, 20, 40, 80, 100, 160 mA; 80, 100, 120, 140 kVp) by varying the depth dose and evaluate $CTDI_{vol}$ value. And each attenuation corrected PET/CT images used NEMA PET Phantom$^{TM}$ (NU2-1994) was evaluated by SUV. Results: Abdominal diagnosis CT dose in general pediatric (about 10 ages) parameter (100 kVp, 100 mA) than very low dose CT parameter (80 kVp, 10 mA) at the depth dose was reduced approximately 92%, $CTDI_{vol}$ was reduced to about 88%. Each CT attenuation corrected parameters PET images showed no change in the value of SUV. Conclusion: for pediatric patients, PET/CT scan can be obtained with very low dose attenuation correction CT (80 kVp, 10 mA), and such attenuation correction CT dose was reduced 100 fold than diagnosis CT dose. PET / CT scan used very low dose CT attenuation correction in pediatric patients can be helpful in reducing radiation dose.

  • PDF

Correction of Artifacts due to Patient Arm Motion in PET/CT: Scatter-Limit Correction (PET/CT 검사에서 움직임에 의한 인공물의 산란제한보정법 적용 영상 평가)

  • Bahn, Young Kag;Lee, Seung Jae;Kim, Jung Yul;Oh, Sin Hyun;Nam-Koong, Hyuk;Park, Hoon-Hee;Kang, Chun Koo;Lim, Han Sang;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2012
  • Purpose : Arm motion can give rise to striking cold artifact on PET/CT. We investigated that evaluation of scatter-limit correction and correct the patient arm motion artifact in Discovery 600 PET/CT. Materials and Methods : To evaluate a radioactivity uptake (Bq/ml) and a standard uptake value (SUV), the scatter limit correction and scatter correction were compared using 1994 NEMA Phantom$^{TM}$ in Discovery 600 PET/CT (GE Healthcare, Mi, We). Arm motion phantom study was involved a central 20 cm diameter cylinder simulating the neck and 2 peripheral 10 cm diameter cylinders simulating arms. The positions of the arms were altered so as to introduce different amounts of misalignment. The evaluation of arm motion phantom study used the radioactivity uptake and SUV in scatter correction and scatter limit correction. Results : The statistical significance of radioactivity uptake and SUV did not show the differences in comparisons of the scatter limit correction and the scatter correction that not show (p<0.05). Radioactivity uptake of the scatter correction was up to 3.1 kBq/ml in the 0.04 kBq/ml. It was approximately 98.7% undervalued in the arm motion phantom study. However, Radioactivity uptake of the scatter limit correction was up to 3.0 kBq/ml in the 2.11 kBq/ml. It was approximately 30% undervalued in arm motion phantom study. SUV of the scatter correction was 1.05 to 0.006 and underestimated about 98%. However, an applying SUV of the scatter limit correction changed the value as 0.67 which is underestimated about 25%. Radioactivity uptake and SUV of the scatter limit correction was increased approximately 60%, or more than the scatter correction. Conclusion : It is considered that if the patient arm motion artifact was occurred the scatter limit correction will be applicable to give an accurate diagnosis.

  • PDF

Quantitative Differences between X-Ray CT-Based and $^{137}Cs$-Based Attenuation Correction in Philips Gemini PET/CT (GEMINI PET/CT의 X-ray CT, $^{137}Cs$ 기반 511 keV 광자 감쇠계수의 정량적 차이)

  • Kim, Jin-Su;Lee, Jae-Sung;Lee, Dong-Soo;Park, Eun-Kyung;Kim, Jong-Hyo;Kim, Jae-Il;Lee, Hong-Jae;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • Purpose: There are differences between Standard Uptake Value (SUV) of CT attenuation corrected PET and that of $^{137}Cs$. Since various causes lead to difference of SUV, it is important to know what is the cause of these difference. Since only the X-ray CT and $^{137}Cs$ transmission data are used for the attenuation correction, in Philips GEMINI PET/CT scanner, proper transformation of these data into usable attenuation coefficients for 511 keV photon has to be ascertained. The aim of this study was to evaluate the accuracy in the CT measurement and compare the CT and $^{137}Cs$-based attenuation correction in this scanner. Methods: For all the experiments, CT was set to 40 keV (120 kVp) and 50 mAs. To evaluate the accuracy of the CT measurement, CT performance phantom was scanned and Hounsfield units (HU) for those regions were compared to the true values. For the comparison of CT and $^{137}Cs$-based attenuation corrections, transmission scans of the elliptical lung-spine-body phantom and electron density CT phantom composed of various components, such as water, bone, brain and adipose, were performed using CT and $^{137}Cs$. Transformed attenuation coefficients from these data were compared to each other and true 511 keV attenuation coefficient acquired using $^{68}Ge$ and ECAT EXACT 47 scanner. In addition, CT and $^{137}Cs$-derived attenuation coefficients and SUV values for $^{18}F$-FDG measured from the regions with normal and pathological uptake in patients' data were also compared. Results: HU of all the regions in CT performance phantom measured using GEMINI PET/CT were equivalent to the known true values. CT based attenuation coefficients were lower than those of $^{68}Ge$ about 10% in bony region of NEMA ECT phantom. Attenuation coefficients derived from $^{137}Cs$ data was slightly higher than those from CT data also in the images of electron density CT phantom and patients' body with electron density. However, the SUV values in attenuation corrected images using $^{137}Cs$ were lower than images corrected using CT. Percent difference between SUV values was about 15%. Conclusion: Although the HU measured using this scanner was accurate, accuracy in the conversion from CT data into the 511 keV attenuation coefficients was limited in the bony region. Discrepancy in the transformed attenuation coefficients and SUV values between CT and $^{137}Cs$-based data shown in this study suggests that further optimization of various parameters in data acquisition and processing would be necessary for this scanner.

Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging (소동물 영상을 위한 Siemens Inveon PET 스캐너의 성능평가)

  • Yu, A-Ram;Kim, Jin-Su;Kim, Kyeong-Min;Lee, Young-Sub;Kim, Jong-Guk;Woo, Sang-Keun;Park, Ji-Ae;Kim, Hee-Joung;Cheon, Gi-Jeong
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Inveon PET is a recently developed preclinical PET system for small animal. This study was conducted to measure the performance of Inveon PET as recommended by the NEMA NU 4-2008. We measured the spatial resolution, the sensitivity, the scatter fraction and the NECR using a F-18 source. A 3.432 ns coincidence window was used. A $1\;mm^3$ sized F-18 point source was used for the measurement of spatial resolution within an energy window of 350~625 keV. PET acquisition was performed to obtain the spatial resolution from the center to the 5 cm offset toward the edge of the transverse FOV. Sensitivity, scatter fraction, and NECR were measured within an energy window of 350~750 keV. For measuring the sensitivity, a F-18 line source (length: 12.7 cm) was used with concentric 5 aluminum tubes. For the acquisition of the scatter fraction and the NECR, two NEMA scatter phantoms (rat: 50 mm in diameter, 150 mm in length; mouse: 25 mm in diameter, 70 mm in length) were used and the data for 14 half-lives (25.6 hr) was obtained using the F-18 line source (rat: 316 MBq, mouse: 206 MBq). The spatial resolution of the F-18 point source was 1.53, 1.50 and 2.33 mm in the radial, tangential and axial directions, respectively. The volumetric resolution was $5.43\;mm^3$ in the center. The absolute sensitivity was 6.61%. The peak NECR was 486 kcps @121 MBq (rat phantom), and 1056 kcps @128 MBq (mouse phantom). The values of the scatter fraction were 20.59% and 7.93% in the rat and mouse phantoms, respectively. The performances of the Inveon animal PET scanner were measured in this study. This scanner will be useful for animal imaging.

Evaluation of metabolic tumor volume using different image reconstruction on 18F-FDG PET/CT fusion image (18F-FDG PET/CT 융합영상에서 영상 재구성 차이에 의한 MTV (Metabolic tumor volume) 평가)

  • Yoon, Seok Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.1
    • /
    • pp.433-440
    • /
    • 2018
  • Recently, MTV(metabolic tumor volume) has been used as indices of the whole tumor FDG uptake on FDG PET image but it is influenced by image reconstruction. The purpose of this study was to evaluate the correlation between actual volume and metabolic tumor volume applying different SUVmax threshold for different reconstruction algorithm on phantom study. Measurement were performed on a Siemens Biograph mCT40 using a NEMA IEC body phantom containing different size six spheres filled with F18-FDG applying four SBRs (4:1, 8:1, 10:1, 20:1). Images reconstructed four algorithms (OSEM3D, OSEM3D+PSF, OSEM3D +TOF, OSEM3D+TOF+PSF) and MTV were measured with different SUVmax threshold. Overall, the use of increasing thresholds result in decreasing MTV. and increasing the signal to background ratio decreased MTV by applying same SUVmax threshold. The 40% SUVmax threshold gave the best concordance between measured and actual volume in PSF and PSF+TOF reconstruction image. and the 45% threshold had the best correlation between the volume measured and actual volume in OSEM3D and TOF reconstruction image. we believe that this study will be used when the measurement of MTV applying various reconstruction image.

The Evaluation of the Difference of the SUV Caused by DFOV Change in PET/CT (PET/CT 검사에서 확대된 표시시야가 표준섭취계수에 미치는 영향 평가)

  • Kwak, In-Suk;Lee, Hyuk;Choi, Sung-Wook;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.13-20
    • /
    • 2011
  • Purpose: The limited FOV(Field of View) of CT (Computed Tomography) can cause truncation artifact at external DFOV (Display Field of View) in PET/CT image. In our study, we measured the difference of SUV and compared the influence affecting to the image reconstructed with the extended DFOV. Materials and Methods: NEMA 1994 PET Phantom was filled with $^{18}F$(FDG) of 5.3 kBq/mL and placed at the center of FOV. Phantom images were acquired through emission scan. Shift the phantom's location to the external edge of DFOV and images were acquired with same method. All of acquired data through each experiment were reconstructed with same method, DFOV was applied 50 cm and 70 cm respectively. Then ROI was set up on the emission image, performed the comparative analysis SUV. In the clinical test, patient group shown truncation artifact was selected. ROI was set up at the liver of patient's image and performed the comparative analysis SUV according to the change of DFOV. Results: The pixel size was increase from 3.91 mm to 5.47 mm according to the DFOV increment in the centered location phantom study. When extended DFOV was applied, $_{max}SUV$ of ROI was decreased from 1.49 to 1.35. In case of shifted the center of phantom location study, $_{max}SUV$ was decreased from 1.30 to 1.20. The $_{max}SUV$ was 1.51 at the truncated region in the extended DFOV. The difference of the $_{max}SUV$ was 25.9% higher at the outside of the truncated region than inside. When the extended DFOV was applied, $_{max}SUV$ was decreased from 3.38 to 3.13. Conclusion: When the extended DFOV was applied, $_{max}SUV$ decreasing phenomenon can cause pixel to pixel noise by increasing of pixel size. In this reason, $_{max}SUV$ was underestimated. Therefore, We should consider the underestimation of quantitative result in the whole image plane in case of patient study applied extended DFOV protocol. Consequently, the result of the quantitative analysis may show more higher than inside at the truncated region.

  • PDF

The Usability Evaluation of the Usefulness of Bismuth Shields in PET/CT Examination (PET/CT 검사에서 비스무스(bismuth) 차폐체의 적용에 따른 유용성 평가)

  • Park, Hoon-Hee;Lee, Juyoung;Kim, Ji-Hyeon;Nam, Kun-Sik;Lyu, Kwang-Yeul;Lee, Tae Soo
    • Journal of radiological science and technology
    • /
    • v.37 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • Recently with CT developed, various studies for reduction of exposure dose is underway. Study of bismuth shields in these studies is actively underway, and has already been applied in the clinical. However, the application of the PET/CT examination was not activated. Therefore, through this study, depending on the application of bismuth shields in the PET/CT examination, we identify the quality of the image and the impact on the Standard Uptake Value (SUV). In this study, to apply to the shielding of the breast, by using the bismuth shields that contains 0.06 mm Pb ingredients, was applied to the PET/CT GEMINI TF 64 (Philips Healthcare, Cleveland, USA). Phantom experiments using the NEMA IEC Body Phantom, images were acquired according to the presence or absence of bismuth shields apply. Also, When applying, images were obtained by varying the spacing 0, 1, 2 cm each image set to the interest range in the depth of the phantom by using EBW-NM ver.1.0. When image of the PET Emission acquires, the SUV was in increased depending on the use of bismuth shields, difference in the depth to the surface from deep in the phantom increasingly SUV increased (P<0.005). Also, when using shields, as the more gab decreased, SUV is more increased (P<0.005). Through this study, PET/CT examination by using of bismuth shields which is used as purpose of reduction dose. When using shields, the difference of SUV resulting from the application of bismuth shields exist and that difference when gab is decrease and surface is wider. Therefore, setting spacing of shield should be considered, if considering the reduction of the variation of SUV and image quality, disease of deep organs should be a priority rather than superficial organ disease. Use of bismuth shielding factor considering the standard clinical examination, decrease unnecessary exposure can be expected to be considered.