Browse > Article
http://dx.doi.org/10.15207/JKCS.2018.9.1.433

Evaluation of metabolic tumor volume using different image reconstruction on 18F-FDG PET/CT fusion image  

Yoon, Seok Hwan (Department of Nuclear Medicine, Seoul National University Hospital)
Publication Information
Journal of the Korea Convergence Society / v.9, no.1, 2018 , pp. 433-440 More about this Journal
Abstract
Recently, MTV(metabolic tumor volume) has been used as indices of the whole tumor FDG uptake on FDG PET image but it is influenced by image reconstruction. The purpose of this study was to evaluate the correlation between actual volume and metabolic tumor volume applying different SUVmax threshold for different reconstruction algorithm on phantom study. Measurement were performed on a Siemens Biograph mCT40 using a NEMA IEC body phantom containing different size six spheres filled with F18-FDG applying four SBRs (4:1, 8:1, 10:1, 20:1). Images reconstructed four algorithms (OSEM3D, OSEM3D+PSF, OSEM3D +TOF, OSEM3D+TOF+PSF) and MTV were measured with different SUVmax threshold. Overall, the use of increasing thresholds result in decreasing MTV. and increasing the signal to background ratio decreased MTV by applying same SUVmax threshold. The 40% SUVmax threshold gave the best concordance between measured and actual volume in PSF and PSF+TOF reconstruction image. and the 45% threshold had the best correlation between the volume measured and actual volume in OSEM3D and TOF reconstruction image. we believe that this study will be used when the measurement of MTV applying various reconstruction image.
Keywords
FDG PET/CT Fusion; MTV; OSEM3D; PSF; TOF; SUVmax;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med. Vol. 50, No. 1, pp. 88-99, 2009.   DOI
2 Israel O, Kuten A, Early detection of cancer recurrence: 18F-FDG PET/CT can make a difference in diagnosis and patient care. J Nucl Med. Vol. 48, No. 1, pp. 28-35, 2007.
3 G. J. Kim, M. C. Jeon, M. S. Han, S. Y. Seo, N. S. Kim, W. G. Bae. In the examination of PET/CT, Breast-tool production and availability of using FRP to check for breast disease. Journal of the Korea Convergence Society, Vol. 8. No. 9, pp. 175-181, 2017.   DOI
4 Thie JA. Understanding the standardized uptake value, its methods and implications for usage. J Nucl Med. Vol. 45, No. 9, pp. 1431-1464, 2004.
5 Higashi K, Ueda Y, Arisaka Y, Sakuma T, Nambu Y, Oguchi M, et al. 18F-FDG uptake as a biologic prognostic factor for recurrence in patients with surgically resected non-small cell lung cacer. J Nucl Med. Vol. 43, No. 1, pp. 39-45, 2004.
6 Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PRECIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med. Vol. 50, no. Suppl 1 122S-150S, 2009.   DOI
7 Tomoka Kitao, Kenji Hirata, Katsumi Shima, Takashi Hayashi, Mitsunori Sekizawa, Toshiki Takei, Wataru Ichimura, Masao Harada, Keishi Kondo, and Nagara Tamaki. Reproducibility and uptake time dependency of volume-based parameters on FDG-PET for lung cancer. BMC Cancer. Vol.16, pp. 576, 2016.   DOI
8 Sridhar P1, Mercier G, Tan J, Truong MT, Daly B, Subramaniam RM. FDG PET Metabolic Tumor Volume Segmentation and Pathologic Volume of Primary Human Solid Tumors. AJR Am J Roentgenol. Vol. 202, No. 5, pp. 1114-1119, 2014.   DOI
9 Chen HH, Chiu NT, Su WC, Guo HR, Lee BF. Prognostic value of whole-body total lesion glycolysis at pretreatment FDG PET/CT in non-small cell lung cancer. Radiology. Vol. 264, No. 2, pp. 559-566, 2012.   DOI
10 Liao S, Penney BC, Zhang H, Suzuki K, Pu Y. Prognostic value of the quantitative metabolic volumetric measurement on 18 F-FDG PET/CT in Stage IV nonsurgical small-cell lung cancer. Acad Radiol. Vol. 19, No. 1, pp. 69-77, 2012.   DOI
11 Ryu IS, Kim JS, Roh JL, Lee JH, Cho KJ, Choi SH, et al. Prognostic value of preoperative metabolic tumor volume and total lesion glycolysis measured by 18F-FDG PET/CT in salivary gland carcinomas. J Nucl Med. Vol. 54, No. 7, pp. 1032-1038, 2013.   DOI
12 Prieto E, Dominguez-Prado I, Garcia-Velloso MJ, Penuelas I, Richter JA, Marti-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med. Vol. 38, No. 2, pp. 103-109, 2013.   DOI
13 Knausl B, Hirtl A, Dobrozemsky G, Bergmann H, Kletter K, Dudczak R, et al. PET based volume segmentation with emphasis on the iterative TrueX algorithm. Z Med Phys. Vol. 22, No. 1, pp. 29-39, 2012.   DOI
14 Knäusl B, Rausch IF, Bergmann H, Dudczak R, Hirtl A, Georg D. Influence of PET reconstruction parameters on the TrueX algorithm. A combined phantom and patient study. Nuklearmedizin. Vol. 52, No. 1, pp. 28-35, 2013.   DOI
15 M. Meignan, M. Sasanelli, E. Itti. Metabolic tumor volumes measured at staging in lymphoma: methodological evaluation on phantom experiments and patients. Eur J Nucl Med. Vol. 41, No. 6, pp. 1113-1122, 2014.   DOI
16 Julian MM Rogasch, frank Hofheinz, Alexandr Lougovski, Christian Furth, Juri Ruf, Oliver Sgrober, Konrad Mohnike, Peter Hass, Mathias Walke, Holger Amthauer, Ingo G steffen. The influence of different signal to background ratios on spatial resolution and F18-FDG-PET quantification using point spread function and time of flight reconstruction. EJNMMI Physics. Vol. 1, No. 1, pp. 12, 2014.   DOI
17 Hoetjes NJ, van Velden FH, Hoekstra OS, et al. Partial volume correction strategies for quantitative FDG PET in oncology. Eur J Nucl Med Mol Imaging. Vol. 37, No. 9, pp. 1679-1687, 2010.   DOI
18 Soret M, Bacharach SL, Buvat I. Partial volume effect in PET tumor imaging. J Nucl Med. Vol. 48, No. 6, pp. 932-945, 2007.   DOI