• Title/Summary/Keyword: NEAT

Search Result 465, Processing Time 0.019 seconds

A Study on the Curing Behavior and Toughness of Amine Terminated Polyetherimide/Epoxy Resin System (Amine Terminated Polyetherimide/에폭시 수지 시스템의 경화공정연구와 파괴인성에 관한 연구)

  • 김민영;이광기;김원호;황병선;김대식;박종만
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.147-150
    • /
    • 2002
  • The cure kinetics of blends of epoxy (DGEBA:diglycidyl ether of bisphenol A)/anhydride (NMA:nadic methyl anhydride) resin with synthesized amino terminated polyetherimide (AT-PEI) were studied using differential scanning calorimetry (DSC) and Dynamic Mechanical Analysizer(DMA) under isothermal condition to determine the reaction parameters and gel-vitrification behavior. The fracture toughness of AT-PEI 20phr/epoxy resin system was improved over 224% and 42.5% more than neat epoxy resin and commercial PEI/Epoxy Resin System.

  • PDF

A Study on the Preparation of the Eco-friendly Carbon Fibers-Reinforced Composites

  • Choi, Kyeong-Eun;Seo, Min-Kang
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.58-61
    • /
    • 2013
  • In this work, the effect of catalysts on the mechanical properties of carbon fibers-reinforced epoxy matrix composites cured by cationic latent thermal catalysts, i.e., N-benzylpyrazinium hexafluoroantimonate (BPH) was studied. Differential scanning calorimetry was executed for thermal characterization of the epoxy matrix system. Mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor ($K_{IC}$), and specific fracture energy ($G_{IC}$). As a result, the conversion of neat epoxy matrix cured by BPH was higher than that of one cured by diaminodiphenyl methane (DDM). The ILSS, $K_{IC}$, $G_{IC}$, and impact strength of the composites cured by BPH were also superior to those of the composites cured by DDM. This was probably the consequence of the effect of the substituted benzene group of BPH catalyst, resulting in an increase in the cross-link density and structural stability of the composites studied.

Reinforcing effect of Single Wall Carbon Nanotubes on Acrylic Fibers

  • Min, Byung G.;Sreekumar, T.V.;Kumar, Satish
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.11-12
    • /
    • 2003
  • The reinforcing effect of single wall carbon nanotubes (SWNTs) on polyacrylonitrile (PAN) fiber were investigated. The tensile fracture images of the composite fibers demonstrate that SWNTs are well dispersed in PAN matrix as bundles (ropes) ca. 20nm in thickness. It was found that SWNTs play a role not only to reinforce but also to toughen the PAN fiber by increasing breaking strain as well as modulus and strength of the fiebrs. The composite fibers exhibited improved dimensional stability at elevated temperature compared to the neat PAN fiber.

  • PDF

Silica Sulfuric Acid/Wet $SIO_2$as a Novel System for the Deprotection of Acetals by Using Microwave Irradiation under Solvent Free Conditions (무용매 조건하에서 황산/젖은 $SIO_2$와 마이크로웨이브를 이용한 아세탈의 새로운 탈보호기 방)

  • BiBi Fathemeh, Mirjalili; Mohammad Ali, Zolfigol;Abdolhamid, Bamoniri
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.6
    • /
    • pp.546-548
    • /
    • 2001
  • Neat chlorosulfonic acid reacts with silica gel to give silica sulfuric acid in which sulfuric acid is immobilized on the surface of silica gel via covalent bond. A combination of silica sulfuric acid and wet SiO$_2$ was used as an effective deacetalizating agent for the conversion of acetals to their corresponding carbonyl derivatives by using microwave irradiation under solvent free conditions.

  • PDF

The Strategy Plans for Practical use of Hydrogen Fueled Vehicles in Domestic (국내의 수소 자동차 실용화를 위한 전략 방안)

  • Lee, Kwang-Ju;Lee, Jong-Tae;Yong, Gee-Joong
    • Journal of Hydrogen and New Energy
    • /
    • v.21 no.4
    • /
    • pp.346-353
    • /
    • 2010
  • Hydrogen fueled vehicle was evaluated as one of the next-generation technology that will be able to solve the global warming, depletion of fossil fuel and etc. The practical use of hydrogen fueled vehicle, nevertheless, is being delayed more than expected schedule due to various causes. In order to promote the dissemination of hydrogen fueled vehicle, development status and obstacle factors of practical use for hydrogen fueled vehicles were reviewed and the strategy plans for dissemination promotion were proposed. Hydrogen fueled vehicles are included the hydrogen fuel cell, neat and enriched hydrogen fueled engines. The technicalness, economy, safety, cognizance, system, support and etc were considered in the strategy plans.

Effect of Melt-mixing Conditions on Fracture Properties of Bioabsorbable HA/PLLA Composite Materials (생체흡수성 HA/PLLA 복합재료의 용융혼련조건이 파괴특성에 미치는 영향)

  • Park, Sang-Dae;Lee, Deok-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.732-738
    • /
    • 2007
  • Effects of melt-mixing conditions on fracture properties of hydroxyapatite filled bioabsorbable poly(L-lactic acid)(HA/PLLA) composites was investigated by measuring the firacture toughness value of HA/PLLA composites prepared under different mixing time and rotor speed. The fracture surface morphology was also examined by profile measurement and scanning electron microscopies. It was found that the fracture toughness of HA/PLLA composites decreases due to decrease of ductile deformation of PLLA matrix and debonding of interfaces with increase of the rotor speed and mixing time. Effect of mixing process on neat PLLA was also assessed, and it was found that the fracture toughness of PLLA decreases due to disappearance of multiple craze formation and increase of defects. Such thermal and shear-stress degradation were found to be the primary mechanisms of the degradation of HA/PLLA composites during melt-mixing process.

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • v.2 no.3
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

Poly(methyl methacrylate-co-styrene)/Silicate Nanocomposites Synthesized by Multistep Emulsion Polymerization

  • Park, Yeong-Suk;Kim, Yoon-Kyung;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.418-424
    • /
    • 2003
  • Exfoliated poly(methyl methacrylate-co-styrene) [P(MMA-co-ST)]/silicate nanocomposites were synthesized through a multistep emulsion polymerization. The methyl methacrylate monomers were polymerized first and then the styrene monomers were polymerized. The nanocomposites had core-shell structures consisting of PMMA (core) and PS (shell); these structures were confirmed by $^1$H NMR spectroscopy and TEM, respectively. P(MMA-co-ST) copolymers showed two molecular weight profiles and two glass transition temperatures (T$_{g}$) in GPC and DMA measurements. At 30 $^{\circ}C$, the nanocomposites exhibited 83 and 91 % increases in their storage moduli relative to the neat copolymer because the silicate layers were dispersed uniformly in the polymer matrix.x.

Spray Characteristics in CI Engines Fuelled with Vegetable Oils and Its Derivatives

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.1
    • /
    • pp.15-26
    • /
    • 2011
  • In this article, spray characteristics in CI engines fuelled with vegetable oils and its derivatives will be reviewed. Of edible vegetable oils, soybean oil and rapeseed oil were mainly investigated. Of inedible vegetable oils, jatropha oil and used frying oil were main concern on the research on the spray characteristics in CI engine. Spray angle and spray penetration were mainly examined among the macroscopic spray characteristics and Sauter mean diameter was only investigated among the microscopic spray characteristics. There exist six different definitions of spray angle which should be examined. Neat vegetable oil and biodiesel fuels show smaller spray angle than diesel fuel. Biodiesel fuel and vegetable oils and its blend have a longer spray penetration than diesel fuel. However, biodiesel blends with diesel shows the similar spray penetration with diesel fuel. SMDs in the biodiesel spray, vegetable oils and its blends spray are higher than that in the diesel spray.

Electrical Conduction and Dielectric Properties of Epoxy/Organophilic Clay Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.43-46
    • /
    • 2013
  • In order to develop electrical insulation material, organically modified layered silicate was incorporated into an epoxy matrix to prepare nanocomposite. Transmission electron microscopy (TEM) observation showed that organophillic clay was in an exfoliated state, while hydrophilic clay was not dispersed into nanolayers within the epoxy matrix. Epoxy/organophilic clay (2.8 wt%) nanocomposite was mixed and cured at $150^{\circ}C$ for 4.5 hr. I-V characteristics, volume resistance and dielectric properties for the cured nanocomposite were estimated. Current density increased with increasing temperature, and volume resistance decreased with increasing temperature, in neat epoxy and epoxy/organophilic clay (2.8 wt%) nanocomposite. As frequency increased, the dielectric loss value decreased in the two systems.