DOI QR코드

DOI QR Code

Electrical Conduction and Dielectric Properties of Epoxy/Organophilic Clay Nanocomposite

  • Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
  • Received : 2013.01.10
  • Accepted : 2013.01.17
  • Published : 2013.02.25

Abstract

In order to develop electrical insulation material, organically modified layered silicate was incorporated into an epoxy matrix to prepare nanocomposite. Transmission electron microscopy (TEM) observation showed that organophillic clay was in an exfoliated state, while hydrophilic clay was not dispersed into nanolayers within the epoxy matrix. Epoxy/organophilic clay (2.8 wt%) nanocomposite was mixed and cured at $150^{\circ}C$ for 4.5 hr. I-V characteristics, volume resistance and dielectric properties for the cured nanocomposite were estimated. Current density increased with increasing temperature, and volume resistance decreased with increasing temperature, in neat epoxy and epoxy/organophilic clay (2.8 wt%) nanocomposite. As frequency increased, the dielectric loss value decreased in the two systems.

Keywords

References

  1. Y. S. Cho, M. J. Shim and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000) [DOI: http://dx.doi.org/10.1016/S0254-0584(00)00272- 8].
  2. R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/ j.msea.2006.09.077].
  3. T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki and T. Shimizu, IEEE Annual Report Conference on CEIDP, p. 239 (2004)
  4. T. Imai, F. Sawa, T. Ozaki, T. Shimizu, R. Kido, M. Kozako and T. Tanaka, Proceedings of International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, p. 5 (2005).
  5. D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI: http://dx.doi.org/10.1002/app.10166].
  6. L. Zhang, Y. Wang, Y. Wang, Y. Sui and D. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: http://dx.doi.org/10.1002/1097-4628 (20001209)].
  7. K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: http://dx.doi. org/10.1002/polb.1108]
  8. R. A. Vaia, K. D. Jandt, E. J. Kramer and E. P. Giannelis, Chem. Mater., 8, 2628 (1996) [DOI: http://dx.doi.org/10.1021/ cm960102h].
  9. S. Arunvisut, S. Phummanee and A Somwangthanaroj, J. Appl. Polym. Sci., 106, 2210 (2007) [DOI: http://dx.doi.org/10.1002/ app.26839].
  10. L. Liu, Z. Qi and X. Zhu, J. Appl. Polym. Sci., 71, 1133 (1999) [DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(19990214)].
  11. L. A. Dissado and J. C. Fothergill, Electrical Degradation and Breakdown in Polymers, G. C. Stevens (ed.), Peter Peregrinus Ltd., London, UK, p. 230 (1992).
  12. D. P. Kang, H. Y. Park and D. H. Han, Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, 10, 31 (2000).
  13. L. Frenkel, S. J. Kryder and A. A. Maryott, Journal of Chemical Physics, 44, 2610 (1966) [DOI: http://dx.doi. org/10.1063/1.1727101].
  14. S. Singha and M. J. Thomas, IEEE Trans. Dielectr. Electr. Insul., 15, 12 (2008) [DOI: http://dx.doi.org/10.1109/TDEI. 2008.4446732].

Cited by

  1. A review of clay-supported Ziegler–Natta catalysts for production of polyolefin/clay nanocomposites through in situ polymerization vol.475, 2014, https://doi.org/10.1016/j.apcata.2014.01.028
  2. Electromagnetic Interference Reflectivity of Nanostructured Manganese Ferrite Reinforced Polypyrrole Composites vol.14, pp.6, 2013, https://doi.org/10.4313/TEEM.2013.14.6.295