• Title/Summary/Keyword: NDIR $CO_2$ detector

Search Result 14, Processing Time 0.03 seconds

Development of NDIR CO2 Gas Detector Using Thermopile Sensor (써모파일 센서를 이용한 NDIR CO2 가스검출기의 개발)

  • Cho, Si-Hyung;Park, Chan-Won
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.35-38
    • /
    • 2012
  • We present a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. Using this thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

A Front-side Dry-Etched Thermopile Detector with 3-5 $\mu m$ Infrared Absorber and Its Application to Novel NDIR $CO_2$ Gas Sensors (3-5 $\mu m$ 적외선 흡수체를 가진 전면 건식 식각된 서모파일과 NDIR $CO_2$ 가스 센서의 응용)

  • Yoo, Kum-Pyo;Kim, Si-Dong;Choi, Woo-Seok;Singh, V.R.;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1470-1471
    • /
    • 2008
  • We present a front-side micromachined thermopile with high sensitivity in the 3-5${\mu}m$ window, and discuss its application to a novel non-dispersive infrared (NDIR) $CO_2$ gas sensor with a light source emitting collimated light. The micromachined thermopile shows a measured sensitivity of 30 mV/W and a $D^*$ of $0.3{\times}10^8cm^{\surd}Hz/W$. Using this newly fabricated thermopile, we also have successfully developed a small, sensitive NDIR $CO_2$ detector module for accurate air quality monitoring systems in energy-saving building and automotive applications. The novel sample cavity comprising specular reflectors around the light bulb is configured to uniformly emit collimated light into the entrance aperture of the cavity in order to enhance the sensitivity of NDIR $CO_2$ detector.

  • PDF

Development of Fast-Response Portable NDIR Analyzer Using Semiconductor Devices

  • Kim, Woo-Seok;Lee, Jong-Hwa;Park, Young-Moo;Yoo, Jai-Suk;Park, Kyoung-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.2099-2106
    • /
    • 2003
  • In this paper, a novel fast response NDIR analyzer (FRNDIR), which uses an electrically pulsed semiconductor emitter and dual type PbSe detector for the PPM-level detection of carbon dioxide (CO$_2$) at a wavelength of 4.28 $\mu\textrm{m}$, is described. Modulation of conventional NDIR energy typically occurs at 1 to 20 Hz. To achieve real time high-speed measurement, the new analyzer employs a semiconductor light emitter that can be modulated by electrical chopping. Updated measurements are obtained every one millisecond. The detector has two independent lead selenide (PbSe) with IR band pass filters. Both the emitter accuracy and the detector sensitivity are increased by thermoelectric cooling of up to -20 degrees C in all semiconductor devices. Here we report the use of semiconductor devices to achieve improved performance such that these devices have potential application to CO$_2$ gas measurement and, in particular, the measurement of fast response CO$_2$ concentration at millisecond level.

Composite Gas Measurement System using NDIR Method (NDIR 방법을 이용한 복합 가스 측정 시스템)

  • Eo, Ik-soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.624-629
    • /
    • 2018
  • The current study was conducted to develop a portable composite gas detector allowing the detection of both $CO_2$ and $CH_4$ gases by means of the Non Dispersive Infra-Red (NDIR) method. The gas detector is configured to radiate infrared waves using infrared lamps, where the wavelength of the infrared light is reduced due to absorption throughout the chamber, and this reduction (absorption) is detected by the absorption detector, before being converted and amplified to a 3.5V~6V electrical signal, providing as accurate a measurement as possible. The conventional singe sensor method measures the relative measurement by absorbing only specified wavelengths of infrared radiation, which in the case of gas detection leads to problems with accuracy due to the lack of a reference sensor when detecting light with a wavelength of only $4.26{\mu}m$. The dual sensor employed in this study provides a comparative measurement between the reference value derived from the wavelength of $3.91{\mu}m$, which is not influenced by other gas sources, and the measurement value derived from the wavelength of $4.26{\mu}m$, in order to reduce the errors and enhance the reliability, thereby allowing low power consumption for portable devices and multi-gas detection for both $CO_2$ and $CH_4$ gases. The portable composite gas detector developed herein provides a measurement rage of 0ppm~5,000ppm for $CO_2$ gas, and 0.5%vol for $CH_4$, which allows the determination of whether the $CO_2$ and $CH_4$ contents in indoor air are less than 1,000ppm or not. The current study established that the composite gas detector can be interlinked with firefighting appliances through portable devices or home automation, and is anticipated to be very effective in fire prevention.

NDIR Multi-Gas Measurement System for Air Quality based on Wireless Sensor Network (무선센서네트워크 기반 공기질 측정을 위한 비분산적외선 복합가스측정시스템)

  • Paik, Seung Hyun;Lee, Jun Yeong;Jung, Sang Woo;Park, Hong Bae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.299-304
    • /
    • 2016
  • As public interest in air quality and environment problem is increasing, many researches are being carried out the gas measurement system. Especially, Non-dispersive infrared (NDIR) measurements using Beer-Lambert gas sensing principle with very high selectivity and long life time are noted for reliable method. It is possible to detect various gases such as carbon dioxide (CO2), carbon monoxide (CO), and nitrogen dioxide (NO2), but many researches are mostly concentrated on CO2 sensor. The multi-gas measuring instrument is high price and unwieldy, therefore it is not suitable for wide area required numerous instrument. So we study the NDIR multi-gas measurement system for air quality based on wireless sensor network, and experiment the realized measurement system.

Temperature Compensation of NDIR $CO_2$ Gas Sensor implemented with ASIC Chip (ASIC칩내장형비분산 적외선 이산화탄소 가스센서의 온도보상)

  • Park, Jong-Seon;Cho, Hee-Chan;Yi, Seung-Hwan
    • 한국가스학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.123-128
    • /
    • 2006
  • This paper describes NDIR $CO_2$ gas sensor that shows the characteristics of temperature compensation. It consists of novel optical cavity that has two elliptical mirrors and a thermopile detector that includes ASIC chip in the same metal package for the amplification of detector output voltage and temperature sensor. The newly developed sensor modules shows high accuracy (less than +/-40 ppm) throughout the measuring concentration of $CO_2$ gas from 0 ppm to 2,000 ppm. After implementing the calculation methods of gas concentration, which is based upon the experimental results, the sensor module shows high accuracy less than +/- 5 ppm error throughout the measuring temperature range $(15^{\circ}C\;to\; 35^{\circ}C)$ and gas concentrations.

  • PDF

Minute Signal Detection Algorithm for Air-pollution Measurement System with The NDIR Detector (NDIR 검출기를 이용하는 대기오염 측정시스템을 위한 미세신호 검출 알고리즘)

  • Choi, Hun;Kim, Hyon-Ho;Whang, Byoung-Han;Lim, Yong-Seok;Ryu, Geun-Taek;Bae, Hyeon-Deok
    • 전자공학회논문지 IE
    • /
    • v.45 no.3
    • /
    • pp.27-35
    • /
    • 2008
  • In this paper, we propose a minute signal detection algorithm for a development of optical analyzer, using the non-dispersive infrared method with multi gas filter correlation wheel, that can measure various environmental air-pollution materials (CO, SO2, NOx, etc.) in real-time. The MCT(mercury cadmium telluride) sensor can detect minute signals those show and absorption characteristic of each environmental pollution materials. In the proposed method, a corresponding data of each environmental pollution materials can be separated by an external trigger and threshold values in the measured continuous signals.

Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity (이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계)

  • Yoon, Jiyoung;Lee, Junyeop;Do, Namgon;Jung, Daewoon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.331-336
    • /
    • 2021
  • The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

Fabrication of Optical Sheet for LED Lighting with Integrated Environment Monitoring Sensors (환경모니터링 센서가 집적된 LED 조명용 광학시트 제작)

  • Choi, Yong Joon;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we developed an optical sheet for LED lighting with integrated $CO_2$ gas and temperature sensor which can monitor at the indoor environment. The optical sheet for LED lighting is fabricated through PMMA(Polymethyl methacrylate) injection process using mold. This research enables to fabricate the reflective sheet, light-guide plate and the prism sheet in a optical sheet. The fabricated sheet demonstrates higher intensity of optical efficiency compared with single-sided sheets. The $CO_2$ sensor was fabricated using NDIR(NON-Dispersive Infrared) method and it has $0.0235mV/V{\cdot}PPM$ sensitivity. The temperature sensor was fabricated using RTD(Resistance temperature detector) method and it has $0.563{\Omega}/^{\circ}C $sensitivity.

Temperature Compensation of NDIR $CO_{2}$ Gas Sensor Implemented with ASIC Chip (ASIC 칩 내장형 비분산 적외선 이산화탄소 가스센서의 온도보상)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.40-45
    • /
    • 2007
  • This paper describes NDIR $CO_{2}$ gas sensor that shows the characteristics of temperature compensation. It consists of novel optical cavity that has two elliptical mirrors and a thermopile that includes ASIC chip in the same metal package for the amplification of detector output voltage and temperature sensor. The newly developed sensor module shows high accuracy ($less\;than {\pm}40\;ppm$) throughout the measuring concentration of $CO_{2}$ gas from 0 ppm to 2,000 ppm. After implementing the calculation methods of gas concentration, which is based upon the experimental results, the sensor module shows high accuracy less than ${\pm}5\;ppm$ error throughout the measuring temperature range ($15^{\circ}C\;to\;35$^{\circ}C$) and gas concentrations with self-temperature compensation.

  • PDF