• Title/Summary/Keyword: NCA bonding

Search Result 9, Processing Time 0.017 seconds

Improvement of Reliability of COG Bonding Using In, Sn Bumps and NCA (NCA 물성에 따른 극미세 피치 COG (Chip on Glass) In, Sn 접합부의 신뢰성 특성평가)

  • Chung Seung-Min;Kim Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.21-26
    • /
    • 2006
  • We developed a bonding at low temperature using fine pitch Sn and In bumps, and studied the reliability of the fine pitch In-Sn solder joints. The $30{\mu}m$ pitch Sn and In bumps were joined together at $120^{\circ}C$. A non conductive adhesive (NCA) was applied during solder joining. Thermal cycling test ($0^{\circ}C-100^{\circ}C$, 2 cycles/h) of up to 2000 cycles was carried out to evaluate the reliability of the solder joints. The bondability was evaluated by measuring the contact resistance (Rc) of the joints through the four point probe method. As the content of filler increased, the reliability improved in the solder joints during thermal cycling test because the contact resistance increased little. The filler redistributed the stress and strains from the thermal shock over the entire joint area.

  • PDF

Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound (횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.395-403
    • /
    • 2012
  • This is direct bonding many of the metal bumps between FPCB and HPCB substrate. By using an ultrasonic horn mounted on an ultrasonic bonding machine, it is possible to bond gold pads onto the FPCB and HPCB at room temperature without an adhesive like ACA or NCA and high heat and solder. This ultrasonic bonding technology minimizes damage to the material. The process conditions evaluated for obtaining a greater bonding strength than 0.6 kgf, which is commercially required, were 40 kHz of frequency; 0.6MPa of bonding pressure; and 0.5, 1.0, 1.5, and 2.0 s of bonding time. The peel off test was performed for evaluating bonding strength, which was found to be more than 0.80 kgf.

Failure in the COG Joint Using Non-Conductive Adhesive and Polymer Bumps (감광성 고분자 범프와 NCA (Non-Conductive Adhesive)를 이용한 COG 접합에서의 불량)

  • Ahn, Kyeong-Soo;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • We studied a bonding at low temperature using polymer bump and Non-Conductive Adhesive (NCA), and studied the reliability of the polymer bump/Al pad joints. The polymer bumps were formed on oxidized Si substrates by photolithography process, and the thin film metals were formed on the polymer bumps using DC magnetron sputtering. The substrate used was AL metallized glass. The polymer bump and Al metallized glass substrates were joined together at $80^{\circ}C$ under various pressure. Two NCAs were applied during joining. Thermal cycling test ($0^{\circ}C-55^{\circ}C$, cycle/30 min) was carried out up to 2000 cycles to evaluate the reliability of the joints. The bondability was evaluated by measuring the contact resistance of the joints through the four point probe method, and the joints were observed by Scanning Electron Microscope (SEM). The contact resistance of the joints was $70-90m{\Omega}$ before the reliability test. The joints of the polymer bump/Al pad were damaged by NCA filler particles under pressure above 200 MPa. After reliability test, some joints were electrically failed since thinner metal layers deposited at the edge of bumps were disconnected.

  • PDF

Bonding Technologies for Chip to Textile Interconnection (칩-섬유 배선을 위한 본딩 기술)

  • Kang, Min-gyu;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • This paper reviews the recent development of electronic textile technology, mainly focusing on chip-textile bonding. Before the chip-textile bonding, a circuit on the textile should be prepared to supply the electrical power and signal to the chip mounted on the fabrics. Either embroidery with conductive yarn or screen-printing with the conductive paste can be applied to implement the circuit on the fabrics depending on the circuit density and resolution. Next, chip-textile bonding can be performed. There are two choices for chip-textile bonding: fixed connection methods such as soldering, ACF/NCA, embroidery, crimping, and secondly removable connection methods like a hook, magnet, zipper. Following the chip-textile bonding process, the chip on the textile is generally encapsulated using PDMS to ensure reliability like water-proof.

Study on the Scap-cure Behavior of Adhesive for Flip-chip Bonding (플립칩 본딩용 접착제의 속경화 거동 연구)

  • Lee, Jun-Sik;Min, Kyung-Eun;Kim, Mok-Sun;Lee, Chang-Woo;Kim, Jun-Ki
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.78-78
    • /
    • 2010
  • 모바일 정보통신기기를 중심으로 패키지의 초소형화, 고집적화를 위해 플립칩 공법의 적용이 증가되고 있고 있으며 접속피치의 미세화에 따라 솔더 및 언더필을 사용하는 C4 공법보다 ACA(Anisotropic Conductive Adhesive), NCA (Non-conductive Adhesive) 등의 접착제를 이용하는 칩본딩 공법에 대한 요구가 증가하고 있다. 특히, NCA 공법의 경우 산업 현장의 대량생산에 대응하기 위해서는 접착제의 속경화 특성이 요구되어 진다. 일반적으로 접착제의 경화거동은 DSC(Differential Scanning Calorimeter)를 사용해 확인하지만, 수초 이내에 경화되는 접착제의 경우는 적용되기 어렵다. 본 연구에서는 이러한 전자패키지용 접착제의 속경화 거동을 효과적으로 평가할 수 있는 방법을 조사 하였다. 실험에서 사용된 접착제는 에폭시계 레진 기반에 이미다졸계 경화제를 사용한 기본적인 포뮬레이션을 사용하였고, 경화시간은 160^{\circ}C에서 1분 이내에 경화되는 특성을 가지고 있다. 경화 거동을 확인하기 위해서 isothermal DSC와 DEA(Dielectric Analysis)의 두가지 방법을 사용해 비교하였다. 두 실험 방법 모두 $160^{\circ}C$를 유지하며 경화 거동을 확인하였고, DoC(Degree of Cure)의 측정오차를 비교 분석하였다. DEA는 이온 모빌리티 변화에 따른 유전손실율을 측정하는 방법으로 80~90% 이후의 경화도는 측정되지 않았지만, 수초 이내에 경화되는 속경화 특성을 평가하기에 적합한 것으로 확인되었다.

  • PDF

Study of Metal(Au) Bump for Transverse Ultrasonic Bonding (금속(Au)범프의 횡초음파 접합 조건 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.52-58
    • /
    • 2011
  • In this paper, the direct bonding process between FPCB and HPCB was studied. By using an ultrasonic horn which is mounted on the ultrasonic bonding machine, it is alternatively possible to bond the gold pads attached on the FPCB and HPCB at room temperature without an adhesive like ACA or NCA. The process condition for obtaining more bonding strength than 0.6 Kgf, which is commercially required, was carried out as 40 kHz of frequency, 0.6 MPa of bonding pressure and 2 second of bonding time. The peel off test was performed for evaluating bonding strength which results in more than 0.8 Kgf.

Contact Resistance of the Flip-Chip Joints Processed with Cu Mushroom Bumps (Cu 머쉬룸 범프를 적용한 플립칩 접속부의 접속저항)

  • Park, Sun-Hee;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.3
    • /
    • pp.9-17
    • /
    • 2008
  • Cu mushroom bumps were formed by electrodeposition and flip-chip bonded to Sn substrate pads. Contact resistances of the Cu-mushroom-bump joints were measured and compared with those of the Sn-planar-bump joints. The Cu-mushroom-bump joints, processed at bonding stresses ranging from 19.1 to 95.2 MPa, exhibited contact resistances near $15m\Omega$/bump. Superior contact-resistance characteristics to those of the Sn-planar-bump joints were obtained with the Cu-mushroom-bump joints. Contact resistance of the Cu-mushroom-bump joints was not dependent upon the thickness of the as-elecroplated Sn-capcoating layer ranging from $1{\mu}m$ to $4{\mu}m$. When the Sn-cap-coating layer was reflowed, however, the contact resistance was greatly affected by the thickness and the reflow time of the Sn-cap-coating layer.

  • PDF