• 제목/요약/키워드: NB-LDPC

검색결과 4건 처리시간 0.018초

Efficient Parallel Block-layered Nonbinary Quasi-cyclic Low-density Parity-check Decoding on a GPU

  • Thi, Huyen Pham;Lee, Hanho
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권3호
    • /
    • pp.210-219
    • /
    • 2017
  • This paper proposes a modified min-max algorithm (MMMA) for nonbinary quasi-cyclic low-density parity-check (NB-QC-LDPC) codes and an efficient parallel block-layered decoder architecture corresponding to the algorithm on a graphics processing unit (GPU) platform. The algorithm removes multiplications over the Galois field (GF) in the merger step to reduce decoding latency without any performance loss. The decoding implementation on a GPU for NB-QC-LDPC codes achieves improvements in both flexibility and scalability. To perform the decoding on the GPU, data and memory structures suitable for parallel computing are designed. The implementation results for NB-QC-LDPC codes over GF(32) and GF(64) demonstrate that the parallel block-layered decoding on a GPU accelerates the decoding process to provide a faster decoding runtime, and obtains a higher coding gain under a low $10^{-10}$ bit error rate and low $10^{-7}$ frame error rate, compared to existing methods.

Selection-based Low-cost Check Node Operation for Extended Min-Sum Algorithm

  • Park, Kyeongbin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권2호
    • /
    • pp.485-499
    • /
    • 2021
  • Although non-binary low-density parity-check (NB-LDPC) codes have better error-correction capability than that of binary LDPC codes, their decoding complexity is significantly higher. Therefore, it is crucial to reduce the decoding complexity of NB-LDPC while maintaining their error-correction capability to adopt them for various applications. The extended min-sum (EMS) algorithm is widely used for decoding NB-LDPC codes, and it reduces the complexity of check node (CN) operations via message truncation. Herein, we propose a low-cost CN processing method to reduce the complexity of CN operations, which take most of the decoding time. Unlike existing studies on low complexity CN operations, the proposed method employs quick selection algorithm, thereby reducing the hardware complexity and CN operation time. The experimental results show that the proposed selection-based CN operation is more than three times faster and achieves better error-correction performance than the conventional EMS algorithm.

1.4 Gbps 비이진 LDPC 코드 복호기를 위한 Fully-Parallel 아키텍처 (Fully-Parallel Architecture for 1.4 Gbps Non-Binary LDPC Codes Decoder)

  • 최인준;김지훈
    • 전자공학회논문지
    • /
    • 제53권4호
    • /
    • pp.48-58
    • /
    • 2016
  • 본 논문은 GF(64) (160,80) 정규 (2,4) 비이진 LDPC 코드 복호기를 위한 높은 처리량의 병렬 아키텍처를 제안한다. 복호기의 복잡도를 낮추기 위해 체크 노드와 변수 노드의 차수가 작은 코드를 사용하며 뛰어난 에러 정정 성능을 위해 높은 위수의 유한체에서 정의된 코드를 사용한다. 본 논문은 Fully-parallel 아키텍처를 설계하고 체크 노드와 변수 노드를 interleaving하여 복호기의 데이터 처리량을 향상시켰다. 또한 체크 노드의 초기화 지연을 단축시킬 수 있는 조기 분류 기법을 제안하여 데이터 처리량을 추가로 향상시켰다. 제안된 복호기는 1 iteration에 37사이클이 소요되며 625MHz 동작주파수에서 1402Mbps의 데이터 처리량을 갖는다.

A Low-Complexity CLSIC-LMMSE-Based Multi-User Detection Algorithm for Coded MIMO Systems with High Order Modulation

  • Xu, Jin;Zhang, Kai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.1954-1971
    • /
    • 2017
  • In this work, first, a multiuser detection (MUD) algorithm based on component-level soft interference cancellation and linear minimum mean square error (CLSIC-LMMSE) is proposed, which can enhance the bit error ratio (BER) performance of the traditional SIC-LMMSE-based MUD by mitigating error propagation. Second, for non-binary low density parity check (NB-LDPC) coded high-order modulation systems, when the proposed algorithm is integrated with partial mapping, the receiver with iterative detection and decoding (IDD) achieves not only better BER performance but also significantly computational complexity reduction over the traditional SIC-LMMSE-based IDD scheme. Extrinsic information transfer chart (EXIT) analysis and numerical simulations are both used to support the conclusions.