• Title/Summary/Keyword: NATM tunnel

Search Result 246, Processing Time 0.024 seconds

A manual for the revised TBM tunnel specification (개정 TBM 터널 표준시방서 해설 연구)

  • Sagong, Myung;Jung, Chi Kwang;Moon, Joon Bai;Kim, Jeayoung;Yun, Do Sik;Yu, Myeong Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.415-428
    • /
    • 2015
  • With increase of the extension of long tunnels and urban tunnelling, demands on the new tunnelling technologies are raised. Currently, drilling and blasting tunnel construction method is mostly used, however, because of sever blast vibration for some occasions, complaints from local residents and rock damages are inevitable. Accordingly, TBM tunnelling is more efficient and effective for such conditions. Nevertheless, tunnel construction costs of TBM cannot compete that of the drill and blasting method in Korea. To overcome such limitations, various TBM equipments and construction technologies are required. In addition, continuous revision of the design standard and specification are required. In this study, a detailed explanation regarding the revised version of TBM section in the tunnel standard specification at 2015 is shown.

A Study on Concrete Lining Stress Changes Considering Load Supporting Capacity of Primary Supports of NATM Tunnel (NATM 터널에서 1차지보재의 지보압을 고려한 콘크리트라이닝 응력변화에 관한 연구)

  • Jeon, Sang Hyun;Shin, Young Wan;Yoo, Han Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.147-154
    • /
    • 2011
  • Currently NATM tunnels are designed by applying the initial ground loads caused during construction to the primary supports, conisting of shotcrete, steel ribs and rock bolts. For long term considerations, it is assumed that the primary supports lose its functionality and therefore the secondary support, i.e. concrete lining, is design to resist against the entire ground loads. But the steel ribs, usually applied to bad ground conditions, are embedded in shotcrete causing very little corrosion and therefore the assumption that the primary support will lose all of its functionality is too conservative. Also even though shotcrete carbonates in long term, excluding it from design is also too conservative. In this study, we have, through analytical and numerical analysis, set a rational level of support pressure and allowable relaxed rock mass height sustainable by the primary support for long term design. Changes in sectional forces of the concrete lining considering the calculated support pressure of the primary supports was also carried out. Shallow subway tunnels were considered in the analysis with weathered rock and soft rock ground conditions. The analysis results showed that, by considering the support pressure of steel ribs, an economical design of the concrete lining is possible.

A study on efficient management of the drainages of underground tunnels for environmentally friendly urban railway systems (도시철도 친환경 지하터널 배수형식의 효율적인 유지관리 방안 검토)

  • Baek, Jong-Myeong;Hong, Jong-Hun;Kim, Han-Bae
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1982-1990
    • /
    • 2010
  • Excepting tunnel of dorimstream - ccachimountain station section, the subway line No.2th section was build using ASSM and NATM methods because of soil pressure and land condition. The way of dealing underground water was selected without sufficient preconsideration of geographical features, ground condition, influence of lowing underground water, and long-term cost of running maintenance so that the form of undrained tunnel was build having decreased construction characteristics and technically improper elements. The form of partial drainage is very difficult to manage structures of tunnel, because water leakage, water pressure causing cracks of lining concretes and scaling are constantly happened. so partial drainage suggest that setting reinforced Anchor Bolt to prevent buoyancy and should increase center drainage way up to height of railroad. Partial drainage suggest that holey pipe(${\phi}$350mm) manhole, drainage checking pipe manhole are should be regularly dredged, when changing roadbed(gravel${\rightarrow}$concrete) drainage checking pipe manhole should be build and setting a limitation of entering underground water's quantities. Beside drainage degree in changed section of structures causing instability of structures is continuous degree. so if efficient drainage way and the patterns of flaws, problems are considered in survey, it will be expected to have a advantage condition in maintenance part.

  • PDF

Groundwater control measures for deep urban tunnels (도심지 대심도 터널의 지하수 변동 영향 제어 방안)

  • Jeong, Jae-Ho;Kim, Kang-Hyun;Song, Myung-Kyu;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.403-421
    • /
    • 2021
  • Most of the urban tunnels in Korea, which are represented by the 1st to 3rd subways, use the drainage tunnel by NATM. Recently, when a construction project that actively utilizes large-scale urban space is promoted, negative effects that do not conform to the existing empirical rules of urban tunnels may occur. In particular, there is a high possibility that groundwater fluctuations and hydrodynamic behavior will occur owing to the practice of tunnel technology in Korea, which has mainly applied the drainage tunnel. In order to solve the problem of the drainage tunnel, attempts are being made to control groundwater fluctuations. For this, the establishment of tunnel groundwater management standard concept and the analysis of the tunnel hydraulic behavior were performed. To prevent the problem of groundwater fluctuations caused by the construction of large-scale tunnels in urban areas, it was suggested that the conceptual transformation of the empirical technical practice, which is applied only in the underground safety impact assessment stage, to the direction of controlling the inflow in the tunnel, is required. And the relationship between the groundwater level and the inflow of the tunnel required for setting the allowable inflow when planning the tunnel was derived. The introduction of a tunnel groundwater management concept is expected to help solve problems such as groundwater fluctuations, ground settlement, depletion of groundwater resources, and decline of maintenance performance in various urban deep tunnel construction projects to be promoted in the future.

A Study on Monte Carlo Simulation in Resin of New Austria Tunnel Method by admixture for Shrinkage Compensating Concrete (무수축 콘크리트 혼화제를 활용한 New Austria Tunnel Method 수지에서 Monte Carlo 시뮬레이션에 관한 연구)

  • Kim, Ki-Jun;Sung, Wan-Mo;Kim, Joo-Han;Jung, Hyung-Hak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.125-131
    • /
    • 2017
  • The influences of scatterer and absorber in turbid material by light scattering in concrete admixture were interpreted for the scattered intensity and wavelength. The molecular properties have been studied by Monte Carlo simulation in resin of New Austria Tunnel Method. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_s$, ${\mu}_a$,${\mu}_t$). Monte Carlo Simulation method for modelling of light transport in the civil engineering and construction field was applied. The results using a phantom were discussed that the admixture for shrinkage compensating concrete in NATM-rasin from source to detector is measured, and scattering intensity is stronger with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for coatings and corrosion for the durability of metal constructions.

Assessment of Rock Mass Properties Ahead of Tunnel Face Using Drill Performance Parameters (천공데이터를 활용한 터널 막장 전방 암반특성 평가)

  • Kim, Kwang-Yeom;Kim, Chang-Yong;Chang, Soo-Ho;Seo, Kyeong-Won;Lee, Seung-Do
    • Explosives and Blasting
    • /
    • v.25 no.1
    • /
    • pp.67-77
    • /
    • 2007
  • The drill monitoring data are useful for the detection of abrupt and unexpected changes in ground renditions. This paper introduces a new approach to how drill performance parameters can be used for the prediction of quantitative rock mass properties ahead of tunnel face and the blasting design. The drill monitoring parameters available for the predictions include the instantaneous advance speed, thrust force, torque, tool pressure and penetration rate. The assessment of the drill monitoring parameters will be able to build a database provided that in-situ drill monitoring informations are accumulated and enable us to make a reasonable blast design based on quantitative assessment of rock mass.

Effect of Shotcrete Lining Adherence on Load Carrying Capacity of Lining (숏크라트 라이닝 층간 부착성이 라이닝의 하중지지력에 미치는 영향)

  • Yoo, Chung-Sik;Kim, Sun-Bin;Bae, Gyu-Jin;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.1
    • /
    • pp.41-51
    • /
    • 2006
  • This paper concerns the effect of lining interface adherence on the lining's load carrying capacity. A series of reduced scale laboratory tests and finite element anlayses were carried out with the aim of gaining insight into the effect of shotcrete lining adherence on the load carrying capacity of double shell lining. The results indicated among other things that the load carrying capacity of a double shell tunnel is significantly affected by the adherence between layers. Also revealed was that for cases with low lining layer adherence stress concentration may occur due to relative movement between the lining layers with this trend being more pronounced with increasing tunnel cover depth. Practical implications from the results of this study are discussed in great detail.

  • PDF

Effects of Earthquake on Tunnel Stability (지진이 터널 안정에 미치는 영향)

  • 박남서
    • Explosives and Blasting
    • /
    • v.14 no.2
    • /
    • pp.71-80
    • /
    • 1996
  • A series of nurmerical analysse for the earhtquake of Iran railway tunnles under construction by NATM(New Astrian Tunnelling Method) were careid out throuth a pseudo-dynamic analyses techique used in a FFM computer program, DWTAP(Daewoo Tunnel Analysis Program), and the results are described in the paper. The analyses were performErl for two case;one is for the primary supports and the other is for the rompletEd permanent roncrete lining. The horizontal and verical groW1d accelerations for the design were estimatEd as 0.34 g and 0.23 g, respectively based on the historical reismic rerords in the proj3et area and the empirical equations. The results show that the turmel would be safe W1der the anticipitOO earthquake motion with the permanent roncrete lining, but some minor cracks rnigt be developErl in the primary shotcrete lining without any significant structural damages.

  • PDF

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.

A probabilistic assessment of ground condition prediction ahead of TBM tunnels combining each geophysical prediction method (TBM 현장에서 막장전방 예측기법 결과의 확률론적 분석을 통한 지반상태 평가)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jeongjun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.257-272
    • /
    • 2016
  • It is usually not an easy task to counter-measure on time and appropriately when confronting with troubles in mechanized tunnelling job-sites because of the limitation of available spaces to perform those actions with the existence of disk cutter, cutter head, chamber and other various apparatus in Tunnel Boring Machine (TBM). So, it is important to predict the ground condition ahead of a tunnel face during tunnel excavation. Efforts have been made to utilize geophysical methods such as elastic wave survey, electromagnetic wave survey, electrical resistivity survey, etc for predicting the ground condition ahead of the TBM tunnel face. Each prediction method among these geophysical methods has its own advantage and disadvantage. Therefore, it might be needed to apply several geophysical methods rather than just one to predict the ground condition ahead of the tunnel face in the complex and/or mixed grounds since those methods will compensate among others. The problem is that each prediction method will give us different answer on the predicted ground condition; how to combine different solutions into a most reasonable and representative predicted value might be important. Therefore, in this study, we proposed a methodology how to systematically combine each prediction method utilizing probabilistic analysis as well as analytic hierarchy process. The proposed methods is applied to a virtual job site to confirm the applicability of the model to predict the ground condition ahead of the tunnel face in the mechanized tunnelling.