DOI QR코드

DOI QR Code

Groundwater control measures for deep urban tunnels

도심지 대심도 터널의 지하수 변동 영향 제어 방안

  • 정재호 ((주)에스와이텍) ;
  • 김강현 (건국대학교 인프라시스템공학과) ;
  • 송명규 (현대건설(주) 기술연구원 신사업기술팀) ;
  • 신종호 (건국대학교 인프라시스템공학과)
  • Received : 2021.09.11
  • Accepted : 2021.11.01
  • Published : 2021.11.30

Abstract

Most of the urban tunnels in Korea, which are represented by the 1st to 3rd subways, use the drainage tunnel by NATM. Recently, when a construction project that actively utilizes large-scale urban space is promoted, negative effects that do not conform to the existing empirical rules of urban tunnels may occur. In particular, there is a high possibility that groundwater fluctuations and hydrodynamic behavior will occur owing to the practice of tunnel technology in Korea, which has mainly applied the drainage tunnel. In order to solve the problem of the drainage tunnel, attempts are being made to control groundwater fluctuations. For this, the establishment of tunnel groundwater management standard concept and the analysis of the tunnel hydraulic behavior were performed. To prevent the problem of groundwater fluctuations caused by the construction of large-scale tunnels in urban areas, it was suggested that the conceptual transformation of the empirical technical practice, which is applied only in the underground safety impact assessment stage, to the direction of controlling the inflow in the tunnel, is required. And the relationship between the groundwater level and the inflow of the tunnel required for setting the allowable inflow when planning the tunnel was derived. The introduction of a tunnel groundwater management concept is expected to help solve problems such as groundwater fluctuations, ground settlement, depletion of groundwater resources, and decline of maintenance performance in various urban deep tunnel construction projects to be promoted in the future.

제1기~제3기 지하철로 대표되는 우리나라 도심지 터널에는 대부분 관용터널공법에 의한 배수형 터널형식이 적용되어 있으나, 최근 도심지 대심도 공간을 적극적으로 활용하는 건설사업이 광범위하게 추진되고 있다는 점을 고려할 때, 기존 도심지 터널의 경험적 규칙에 부합하지 않는 부정적 영향이 발생할 수 있는데, 특히 주로 배수형식을 적용해 온 우리나라 터널기술 관행 상, 지하수 변동과 그에 따른 수리역학적 거동이 발생할 가능성이 크다. 배수형 터널형식 적용의 문제를 해결하기 위해 지하수 변동을 제어하는 시도가 이루어지고 있는 바, 그러한 경우에 필요한 터널 지하수 관리기준의 개념 설정 및 터널수리역학적 거동에 대한 분석을 수행하였다. 도심지 대심도 터널 건설로 인한 지하수 변동 문제를 예방하기 위해서는 현재, 수위를 획일적으로 제어하는 내용의 지하수 관리기준이 지하안전영향평가 단계에서만 적용되고 있는 경험적 기술관행과 관련하여, 터널 내 유입량을 제어하는 방향으로 개념전환이 필요하다는 점을 제시하고, 터널 계획시 허용유입량 설정에 필요한 지하수위 - 터널 내 유입량 관계를 도출하였다. 이러한 터널 지하수 관리개념의 도입이 향후 추진될 다양한 도심지 대심도 터널 건설사업에서 지하수 변동과 그로 인한 지반침하, 지하수자원 고갈 및 유지관리 성능저하 등의 문제 해결에 도움이 될 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(도심 지하 교통 인프라 건설 및 운영 기술 고도화 연구, 과제번호 21UUTI-B157793-02).

References

  1. Barton, N. (2004), The why's and how's of high pressure grouting - Part 1, 2, TTI Sept, pp. 28-30.
  2. Davik, K.I., Andersson, H. (2001), "Urban road tunnels, a subsurface solution to a surface problem", Publication No. 12 Norwegian Tunnelling Society, pp. 35-40.
  3. El Tani, M. (1999), "Water inflow into tunnels", Proceedings of the World Tunnel Congress ITA-AITES, Oslo, Balkema, pp. 61-70.
  4. ETRL (2014), Development of monitoring and management system technology for urban underground facilities based on IoT, pp. 29-38.
  5. Fernandez, G., Alvarez, T.A. (1994), "Seepage-induced effective stresses and water pressures around pressure tunnels", Journal of Geotechnical Engineering, Vol. 120, No. 1, pp. 108-128. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(108)
  6. Goodman, R.E., Moye, D.G., Van Schalkwyk, A., Javandel, I. (1965), "Ground water inflows during tunnel driving", Bulletin of the International Association of Engineering Geologists 2, No. 1, pp. 39-56.
  7. Grov, E., Woldmo, O. (2012), "Modern pre-grouting technology in Norway", Proceedings of the Fourth International Conference on Grouting and Deep Mixing, New Orleans, pp. 805-809.
  8. Hard Rock Tunnel Grouting Practice in Finland, Sweden, and Norway (2003), Finnish tunnelling association.
  9. Joo, E.J., Shin, J.H. (2014), "Relationship between water pressure and inflow rate in underwater tunnels and buried pipes", Geotechnique, Vol. 64, No. 3, pp. 226-231. https://doi.org/10.1680/geot.12.P.185
  10. Karlsrud, K. (2001), "Water control when tunnelling under urban areas in the Olso region", NFF Publication No. 12, Vol. 4, pp. 27-33.
  11. Korea Land & Housing Corporation (2020), Manual for underground safety impact assessment-tunnel.
  12. Lei, S. (1999), "An analytical solution for steady flow into a tunnel", Ground Water, Vol. 37, No. 3, pp. 23-26. https://doi.org/10.1111/j.1745-6584.1999.tb00953.x
  13. Li, P., Wang, F., Long, Y., Zhao, X. (2018), "Investigation of steady water inflow into a subsea grouted tunnel", Tunnelling and Underground Space Technology, No. 80, pp. 92-102.
  14. Melby, K., Ovstedal, E. (2001), "Subsea tunnels in Norway", Proceedings of the 4th Symposium on Strait Crossings, Bergen, Norway, pp. 6.
  15. Ministry of Land, Infrastructure and Transport (2015), Ground subsidence safety management manual, pp. 9-30.
  16. Moon, J., and Fernandez, G. (2010), "Effect of excavation-induced groundwater level drawdown on tunnel inflow in a jointed rock mass", Engineering Geology, Vol. 110, No. 3-4, pp. 33-42. https://doi.org/10.1016/j.enggeo.2009.09.002
  17. Road Tunnels-Manual 021 (2004), Norwegian public roads administration, pp. 26-27.
  18. Seoul Metropolitan Government (2016a), Groundwater management manual for construction sites.
  19. Seoul Metropolitan Government (2016b), Summary report of Seoul Groundwater management plan, pp. 5.
  20. Seoul Metropolitan Government (2017), Guidelines for submitting request for qualifications (RFQ), pp. 7.
  21. Shin, J.H. (2010), "Analytical and combined numerical methods evaluating pore water pressure on tunnels", Geotechnique, Vol. 60, No. 2, pp. 141-145. https://doi.org/10.1680/geot.8.T.035
  22. Shin, J.H. (2020), Tunnel Engineering, CIR, Seoul, pp. 19-20.
  23. Shin, J.H., Potts, D.M., Zdravkovic, L. (2005), "The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil", Canadian Geotechnical Journal, Vol. 42, No. 6, pp. 1585-1599. https://doi.org/10.1139/t05-072
  24. Statistics Korea (2014), General status of urban railway in Korea.
  25. Su, K., Zhou, Y., Wu, H., Shi, C., Zhou, L. (2017), "An analytical method for groundwater inflow into a drained circular tunnel", Groundwater, Vol. 55, No. 5, pp. 712-721. https://doi.org/10.1111/gwat.12513
  26. Tonon, F. (2009), "ADECO as an alternative to NATM : how it works, why it works", Proceedings of the Rapid Excavation & Tunnelling Conference 2009, Part 15 SEM, USA, pp. 942-968.
  27. Woo, J.T. (2009), "A study on comparison of a ground water influx quantity in Seoul subway tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 11, No. 4, pp. 353-359.
  28. Xu, Z., Wang, X., Li, S., Gao, B., Shi, S., Xu, X. (2019), "Parameter optimization for the thickness and hydraulic conductivity of tunnel lining and grouting rings", KSCE Journal of Civil Engineering, Vol. 23, No. 6, pp. 2772-2783. https://doi.org/10.1007/s12205-019-1509-9