• Title/Summary/Keyword: N2a cell proteome

Search Result 9, Processing Time 0.027 seconds

Label-Free Quantitative Proteomics and N-terminal Analysis of Human Metastatic Lung Cancer Cells

  • Min, Hophil;Han, Dohyun;Kim, Yikwon;Cho, Jee Yeon;Jin, Jonghwa;Kim, Youngsoo
    • Molecules and Cells
    • /
    • v.37 no.6
    • /
    • pp.457-466
    • /
    • 2014
  • Proteomic analysis is helpful in identifying cancerassociated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine metastatic process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials - NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.

Proteomic Changes in Chick Brain Proteome Post Treatment with Lathyrus Sativus Neurotoxin, β-N-Oxalyl-L-α,β-Diaminopropionic Acid (L-ODAP): A Better Insight to Transient Neurolathyrism

  • Anil Kumar, D;Natarajan, Sumathi;Omar, Nabil A M Bin;Singh, Preeti;Bhimani, Rohan;Singh, Surya Satyanarayana
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 2018
  • Neurolathyrism is a neurodegenerative disorder characterized by spastic paraplegia resulting from the excessive consumption of Lathyrus sativus (Grass pea). ${\beta}$-N-Oxalyl-L-${\alpha},{\beta}$-diaminopropionic acid (L-ODAP) is the primary neurotoxic component in this pea. The present study attempted to evaluate the proteome-wide alterations in chick brain 2 hr and 4 hr post L-ODAP treatment. Proteomic analysis of chick brain homogenates revealed several proteins involved in cytoskeletal structure, signaling, cellular metabolism, free radical scavenging, oxidative stress and neurodegenerative disorders were initially up-regulated at 2 hr and later recovered to normal levels by 4 hr. Since L-ODAP mediated neurotoxicity is mainly by excitotoxicity and oxidative stress related dysfunctions, this study further evaluated the role of L-ODAP in apoptosis in vitro using human neuroblastoma cell line, IMR-32. The in vitro studies carried out at $200{\mu}M$ L-ODAP for 4 hr indicate minimal intracellular ROS generation and alteration of mitochondrial membrane potential though not leading to apoptotic cell death. L-ODAP at low concentrations can be explored as a stimulator of various reactive oxygen species (ROS) mediated cell signaling pathways not detrimental to cells. Insights from our study may provide a platform to explore the beneficial side of L-ODAP at lower concentrations. This study is of significance especially in view of the Government of India lifting the ban on cultivation of low toxin Lathyrus varieties and consumption of this lentil.

A Proteomic Screen for Presynaptic Terminal N-type Calcium Channel (CaV2.2) Binding Partners

  • Khanna, Rajesh;Zougman, Alexandre;Stanley, Elise F.
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.302-314
    • /
    • 2007
  • N type calcium channels (CaV2.2) play a key role in the gating of transmitter release at presynaptic nerve terminals. These channels are generally regarded as parts of a multimolecular complex that can modulate their open probability and ensure their location near the vesicle docking and fusion sites. However, the proteins that comprise this component remain poorly characterized. We have carried out the first open screen of presynaptic CaV2.2 complex members by an antibody-mediated capture of the channel from purified rat brain synaptosome lysate followed by mass spectroscopy. 589 unique peptides resulted in a high confidence match of 104 total proteins and 40 synaptosome proteome proteins. This screen identified several known CaV2.2 interacting proteins including syntaxin 1, VAMP, protein phosphatase 2A, $G_{o\alpha}$, G$\beta$ and spectrin and also a number of novel proteins, including clathrin, adaptin, dynamin, dynein, NSF and actin. The unexpected proteins were classified within a number of functional classes that include exocytosis, endocytosis, cytoplasmic matrix, modulators, chaperones, and cell-signaling molecules and this list was contrasted to previous reports that catalogue the synaptosome proteome. The failure to detect any postsynaptic density proteins suggests that the channel itself does not exhibit stable trans-synaptic attachments. Our results suggest that the channel is anchored to a cytoplasmic matrix related to the previously described particle web.

Identification of Potential Substrates of N-acteylglucosamine Kinase by a Proteomic Approach (프로테오믹스를 이용한 N-아세틸글루코사민 인산화효소 기질단백질의 동정)

  • Lee, HyunSook;Moon, Il Soo
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.586-594
    • /
    • 2013
  • Post-translational O-GlcNAc modification (O-GlcNAcylation) of serine or threonine is a new protein modulation mechanism. In contrast to the classical glycosylation, O-GlcNAcylation occurs in a one-step transfer of O-GlcNAc on both nuclear and cytoplasmic proteins. In contrast to the general consensus that O-GlcNAc is a final modification, a recent paper (J Proteome Res. 2011 10:2725-2733) showed the presence of O-GlcNAc-P on a synaptic assembly protein AP180. This finding raises a fundamental question about its prevalence. To address this question, we used proteomics to identify those proteins that were phospho-signal enriched by GlcNAc kinase (NAGK). Comparison of pDsRed2-$NAGK_{WT}$-transfected HEK293T cell extract with pDsRed2-$NAGK_{D107A}$-transfected control culture revealed 15 phospho-signal increased spots. Excluding those spots that had no detectable amount of protein expression yielded 7 spots, which were selected for ID determination. Among these, two duplicate spots (two $HSP90{\beta}$ and two ENO1 spots) were shown to be O-GlcNAcylated, two (dUTP nucleotidohydrolase mitochondrial isoform 2, glutathione S-transferase P) were not known to be involved in O-GlcNAcylation, and one (heat shock protein gp96 precursor or grp94) was a glycoprotein. The increase in the phospho-levels of O-GlcNAc by NAGK strongly indicates that these proteins are phosphorylated on O-GlcNAc. Our present data support the idea that O-GlcNAc is not a terminal modification.

Proteomic Profiles of Mouse Neuro N2a Cells Infected with Variant Virulence f Rabies Viruses

  • Wang, Xiaohu;Zhang, Shoufeng;Sun, Chenglong;Yuan, Zi-Guo;Wu, Xianfu;Wang, Dongxia;Ding, Zhuang;Hu, Rongliang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.366-373
    • /
    • 2011
  • We characterized the proteomes of murine N2a cells following infection with three rabies virus (RV) strains, characterized by distinct virulence phenotypes (i.e., virulent BD06, fixed CVS-11, and attenuated SRV9 strains), and identified 35 changes to protein expression using two-dimensional gel electrophoresis in whole-cell lysates. The annotated functions of these proteins are involved in various cytoskeletal, signal transduction, stress response, and metabolic processes. Specifically, a-enolase, prx-4, vimentin, cytokine-induced apoptosis inhibitor 1 (CIAPIN1) and prx-6 were significantly up-regulated, whereas Trx like-1 and galectin-1 were down-regulated following infection of N2a cells with all three rabies virus strains. However, comparing expressions of all 35 proteins affected between BD06-, CVS-11-, and SRV9-infected cells, specific changes in expression were also observed. The up-regulation of vimentin, CIAPIN1, prx-4, and 14-3-3 ${\theta}/{\delta}$, and down-regulation of NDPK-B and HSP-1 with CVS and SRV9 infection were ${\geq}2$ times greater than with BD06. Meanwhile, Zfp12 protein, splicing factor, and arginine/serine-rich 1 were unaltered in the cells infected with BD06 and CVS-11, but were up-regulated in the group infected with SRV9. The proteomic alterations described here may suggest that these changes to protein expression correlate with the rabies virus' adaptability and virulence in N2a cells, and hence provides new clues as to the response of N2a host cells to rabies virus infections, and may also aid in uncovering new pathways in these cells that are involved in rabies infections. Further characterization of the functions of the affected proteins may contribute to our understanding of the mechanisms of RV infection and pathogenesis.

Differential Proteome Expression of In vitro Proliferating Bovine Satellite Cells from Longissimus Dorsi, Deep Pectoral and Semitendinosus Muscle Depots in Response to Hormone Deprivation and Addition

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Mi-Rim;Park, Min-Ah;Jang, Eun-Joung;Hong, Seung-Gu;Chang, Jong-Soo;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.459-470
    • /
    • 2009
  • The aim of this study was to analyze the proteome of proliferating bovine satellite cells from longissimus dorsi, deep pectoral and semitendinosus muscle depots which had been subjected to hormonal deprivation or addition in culture. For hormone deprivation or addition studies, the cells were either grown in 10% charcoal-dextran stripped fetal bovine serum (CD-FBS) or in 10% FBS supplemented medium. Further to analyze the effect of insulin like growth factor (IGF-1) and testosterone (TS), the cells were grown in 10% CD-FBS containing IGF-1 (10 ng/ml) or TS (10 nM). Results have shown that hormone deprivation had a negative impact on proliferation of the cells from each of the muscle depots. In case of IGF-1 and TS addition, the proliferation levels were low compared with that of the cells grown in 10% FBS. Hence, to gain the insights of the proteins that are involved in such divergent levels of proliferation, the proteome of such satellite cells proliferating under the above mentioned conditions were analyzed using 2D-DIGE and MALDI-ToF/ToF. Thirteen proteins during hormone deprivation and nine proteins from hormone addition were found to be differentially expressed in all the cultures of the cells from the three depots. Moreover, the results highlighted in this study offer a role for each differentially expressed protein with respect to its effect on positive or negative regulation of cell proliferation.

Proteomic Analysis and the Antimetastatic Effect of N-(4methyl)phenyl-O-(4-methoxy) phenyl-thionocarbamate-Induced Apoptosis in Human Melanoma SK-MEL-28 cells

  • Choi Su-La;Choi Yun-Sil;Kim Young-Kwan;Sung Nack-Do;Kho Chang-Won;Park Byong-Chul;Kim Eun-Mi;Lee Jung-Hyung;Kim Kyung-Mee;Kim Min-Yung;Myung Pyung-Keun
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.224-234
    • /
    • 2006
  • We employed human SK-MEL-28 cells as a model system to identify cellular proteins that accompany N-(4-methyl)phenyl-O-(4-methoxy)phenyl-thionocarbamate (MMTC)-induced apoptosis based on a proteomic approach. Cell viability tests revealed that SK-MEL-28 skin cancer cells underwent more cell death than normal HaCaT cells in a dose-dependent manner after treatment with MMTC. Two-dimensional electrophoresis in conjunction with matrixassisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis or computer matching with a protein database further revealed that the MMTC-induced apoptosis is accompanied by increased levels of caspase-1, checkpoint suppressor-1, caspase-4, NF-kB inhibitor, AP-2, c-Jun-N-terminal kinase, melanoma inhibitor, granzyme K, G1/S specific cyclin D3, cystein rich protein, Ras-related protein Rab-37 or Ras-related protein Rab-13, and reduced levels of EMS (oncogene), ATP synthase, tyrosine-phosphatase, Cdc25c, 14-3-3 protein or specific structure of nuclear receptor. The migration suppressing effect of MMTC on SK-MEL-28 cell was tested. MMTC suppressed the metastasis of SK-MEL-8 cells. It was also identified that MMTC had little angiogenic effect because it did not suppress the proliferation of HUVEC cell line. These results suggest that MMTC is a novel chemotherapeutic and metastatic agents against the SK-MEL-28 human melanoma cell line.

Elucidation of the Inhibitory Mechanisms of Nipponoparmelia laevior Lichen Extract against Influenza A (H1N1) Virus through Proteomic Analyses

  • Cuong, Tran Van;Cho, Se-Young;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1155-1164
    • /
    • 2019
  • Lichens contain diverse bioactive secondary metabolites with various chemical and biological properties, which have been widely studied. However, details of the inhibitory mechanisms of their secondary metabolites against influenza A virus (IAV) have not been documented. Here, we investigated the antiviral effect of lichen extracts, obtained from South Korea, against IAV in MDCK cells. Of the lichens tested, Nipponoparmelia laevior (LC24) exhibited the most potent inhibitory effect against IAV infection. LC24 extract significantly increased cell viability, and reduced apoptosis in IAV-infected cells. The LC24 extract also markedly reduced (~ 3.2 log-fold) IAV mRNA expression after 48 h of infection. To understand the antiviral mechanism of LC24 against IAV, proteomic (UPLC-$HDMS^E$) analysis was performed to compare proteome modulation in IAV-infected (V) vs. mock (M) and LC24+IAV (LCV) vs. V cells. Based on Ingenuity Pathway Analysis (IPA), LC24 inhibited IAV infection by modulating several antiviral-related genes and proteins (HSPA4, HSPA5, HSPA8, ANXA1, ANXA2, $HIF-1{\alpha}$, AKT1, MX1, HNRNPH1, HNRNPDL, PDIA3, and VCP) via different signaling pathways, including $HIF-1{\alpha}$ signaling, unfolded protein response, and interferon signaling. These molecules were identified as the specific biomarkers for controlling IAV in vitro and further confirmation of their potential against IAV in vivo is required. Our findings provide a platform for further studies on the application of lichen extracts against IAV.

Comparative Analysis of Muscle Proteome from Porcine White and Red Muscles by Two-dimensional Electrophoresis (이차원전기영동법을 이용한 white muscle과 red muscle간의 단백질 발현양상의 비교분석)

  • Kim, N.K.;Joh, J.H.;Chu, K.S.;Park, H.R.;Park, B.Y.;Kim, O.H.;Lee, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.731-738
    • /
    • 2003
  • The technique known as proteomics is useful for characterizing the protein expression pattern of a particular tissue or cell type as well as quantitatively identifying differences in the levels of individual proteins. In present study, we carried out the comparative expression patterns of white and red muscles. We used the two-dimensional electrophoresis(2-DE) for analyzing the protein expression. Proteins isolated from porcine white and red muscles were separated by 12% poly-acrylamide gel and then were detected by coomassie blue and silver staining. More than 600 protein spots were detected on each 2-DE gel. By visual analysis of the stained gel, five proteins were identified to be differentially expressed in the white vs red muscle. By database searching based on the molecular weights and pI(isoelectric point) of the five proteins, three of them were found to be most close to troponin I, T and myoglobin. However, further researche is needed for identification and functional analysis of the unidentified proteins. In conclusion, we found five proteins, which are differentially expressed in the white vs red muscle. The functional analysis of the differentially expressed proteins will provide valuable information on biochemical characteristics of the muscle type.