Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0035

Label-Free Quantitative Proteomics and N-terminal Analysis of Human Metastatic Lung Cancer Cells  

Min, Hophil (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine)
Han, Dohyun (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine)
Kim, Yikwon (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine)
Cho, Jee Yeon (Division of Life Sciences and Biotechnology, Korea University)
Jin, Jonghwa (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine)
Kim, Youngsoo (Department of Biomedical Sciences, Medical Research Center, Seoul National University College of Medicine)
Abstract
Proteomic analysis is helpful in identifying cancerassociated proteins that are differentially expressed and fragmented that can be annotated as dysregulated networks and pathways during metastasis. To examine metastatic process in lung cancer, we performed a proteomics study by label-free quantitative analysis and N-terminal analysis in 2 human non-small-cell lung cancer cell lines with disparate metastatic potentials - NCI-H1703 (primary cell, stage I) and NCI-H1755 (metastatic cell, stage IV). We identified 2130 proteins, 1355 of which were common to both cell lines. In the label-free quantitative analysis, we used the NSAF normalization method, resulting in 242 differential expressed proteins. For the N-terminal proteome analysis, 325 N-terminal peptides, including 45 novel fragments, were identified in the 2 cell lines. Based on two proteomic analysis, 11 quantitatively expressed proteins and 8 N-terminal peptides were enriched for the focal adhesion pathway. Most proteins from the quantitative analysis were upregulated in metastatic cancer cells, whereas novel fragment of CRKL was detected only in primary cancer cells. This study increases our understanding of the NSCLC metastasis proteome.
Keywords
label-free quantitative analysis; metastasis; N-terminal analysis; non-small-cell lung cancer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yoon, S.Y., Kim, J.M., Oh, J.H., Jeon, Y.J., Lee, D.S., Kim, J.H., Choi, J.Y., Ahn, B.M., Kim, S., Yoo, H.S., et al. (2006). Gene expression profiling of human HBV- and/or HCV-associated hepatocellular carcinoma cells using expressed sequence tags. Int. J. Oncol. 29, 315-327.
2 Zybailov, B., Mosley, A.L., Sardiu, M.E., Coleman, M.K., Florens, L., and Washburn, M.P. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J. Proteome Res. 5, 2339-2347.   DOI   ScienceOn
3 Tian, T., Hao, J., Xu, A., Luo, C., Liu, C., Huang, L., Xiao, X., and He, D. (2007). Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis. Cancer Sci. 98, 1265-1274.   DOI   ScienceOn
4 Wang, C., Guo, K., Gao, D., Kang, X., Jiang, K., Li, Y., Sun, L., Zhang, S., Sun, C., Liu, X., et al. (2011). Identification of transaldolase as a novel serum biomarker for hepatocellular carcinoma metastasis using xenografted mouse model and clinic samples. Cancer Lett. 313, 154-166.   DOI   ScienceOn
5 Weijers, R.N. (1977). Amino acid sequence in bovine serum albumin. Clin. Chem. 23, 1361-1362.
6 Willis, N.D., Cox, T.R., Rahman-Casans, S.F., Smits, K., Przyborski, S.A., van den Brandt, P., van Engeland, M., Weijenberg, M., Wilson, R.G., de Bruine, A., et al. (2008). Lamin A/C is a risk biomarker in colorectal cancer. PLoS One 3, e2988.   DOI   ScienceOn
7 Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362.   DOI   ScienceOn
8 Wu, W.S., Wu, J.R., and Hu, C.T. (2008). Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev. 27, 303-314.   DOI   ScienceOn
9 Xie, X., Feng, S., Vuong, H., Liu, Y., Goodison, S., and Lubman, D.M. (2010). A comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis 31, 1842-1852.   DOI   ScienceOn
10 Xue, H., Lu, B., Zhang, J., Wu, M., Huang, Q., Wu, Q., Sheng, H., Wu, D., Hu, J., and Lai, M. (2010). Identification of serum biomarkers for colorectal cancer metastasis using a differential secretome approach. J. Proteome Res. 9, 545-555.   DOI   ScienceOn
11 Pujol, J.L., Grenier, J., Daures, J.P., Daver, A., Pujol, H., and Michel, F.B. (1993). Serum fragment of cytokeratin subunit 19 measured by CYFRA 21-1 immunoradiometric assay as a marker of lung cancer. Cancer Res. 53, 61-66.
12 Rao, J.S. (2003). Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer 3, 489-501.   DOI   ScienceOn
13 Srivastava, M., Bubendorf, L., Nolan, L., Glasman, M., Leighton, X., Miller, G., Fehrle, W., Raffeld, M., Eidelman, O., Kallioniemi, O.P., et al. (2001). ANX7 as a bio-marker in prostate and breast cancer progression. Dis. Markers 17, 115-120.   DOI
14 Storr, S.J., Carragher, N.O., Frame, M.C., Parr, T., and Martin, S.G. (2011). The calpain system and cancer. Nat. Rev. Cancer 11, 364-374.   DOI   ScienceOn
15 Streckfus, C., Bigler, L., Dellinger, T., Pfeifer, M., Rose, A., and Thigpen, J.T. (1999). CA 15-3 and c-erbB-2 presence in the saliva of women. Clin. Oral Investig. 3, 138-143.   DOI   ScienceOn
16 McDonald, L., and Beynon, R.J. (2006). Positional proteomics: preparation of amino-terminal peptides as a strategy for proteome simplification and characterization. Nat. Protoc. 1, 1790-1798.   DOI   ScienceOn
17 Streckfus, C., Bigler, L., Tucci, M., and Thigpen, J.T. (2000). A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Invest. 18, 101-109.   DOI   ScienceOn
18 Tan, F., Jiang, Y., Sun, N., Chen, Z., Lv, Y., Shao, K., Li, N., Qiu, B., Gao, Y., Li, B., et al. (2012). Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol. Cell. Proteomics 11, M111 008821.   DOI
19 Lopez-Otin, C., and Bond, J.S. (2008). Proteases: multifunctional enzymes in life and disease. J. Biol. Chem. 283, 30433-30437.   DOI   ScienceOn
20 Nisman, B., Biran, H., Heching, N., Barak, V., Ramu, N., Nemirovsky, I., and Peretz, T. (2008). Prognostic role of serum cytokeratin 19 fragments in advanced non-small-cell lung cancer: association of marker changes after two chemotherapy cycles with different measures of clinical response and survival. Br. J. Cancer 98, 77-79.   DOI   ScienceOn
21 Obchoei, S., Weakley, S.M., Wongkham, S., Wongkham, C., Sawanyawisuth, K., Yao, Q., and Chen, C. (2011). Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol. Cancer 10, 102.   DOI
22 Old, W.M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K.G., Mendoza, A., Sevinsky, J.R., Resing, K.A., and Ahn, N.G. (2005). Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. Proteomics 4, 1487-1502.   DOI   ScienceOn
23 Hsu, J.L., Huang, S.Y., Chow, N.H., and Chen, S.H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem. 75, 6843-6852.   DOI   ScienceOn
24 Opferman, J.T., and Korsmeyer, S.J. (2003). Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4, 410-415.   DOI   ScienceOn
25 Parkin, D.M., and Fernandez, L.M. (2006). Use of statistics to assess the global burden of breast cancer. Breast J. 12 Suppl 1, S70-80.   DOI   ScienceOn
26 Prudova, A., auf dem Keller, U., Butler, G.S., and Overall, C.M. (2010). Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate degradomes by iTRAQ-TAILS quantitative proteomics. Mol. Cell. Proteomics 9, 894-911.   DOI
27 Hwang, S.J., Seol, H.J., Park, Y.M., Kim, K.H., Gorospe, M., Nam, D.H., and Kim, H.H. (2012). MicroRNA-146a suppresses metastatic activity in brain metastasis. Mol. Cells 34, 329-334.   DOI
28 Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60, 277-300.   DOI
29 Kawakami, T., Hoshida, Y., Kanai, F., Tanaka, Y., Tateishi, K., Ikenoue, T., Obi, S., Sato, S., Teratani, T., Shiina, S., et al. (2005). Proteomic analysis of sera from hepatocellular carcinoma patients after radiofrequency ablation treatment. Proteomics 5, 4287-4295.   DOI   ScienceOn
30 Kim, Y.H., Kwei, K.A., Girard, L., Salari, K., Kao, J., Pacyna-Gengelbach, M., Wang, P., Hernandez-Boussard, T., Gazdar, A.F., Petersen, I., et al. (2010). Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 29, 1421-1430.   DOI   ScienceOn
31 Kim, S.J., Jin, J., Kim, Y.J., Kim, Y., and Yu, H.G. (2012). Retinal proteome analysis in a mouse model of oxygen-induced retinopathy. J. Proteome Res. 11, 5186-5203.   DOI   ScienceOn
32 Enoksson, M., Li, J., Ivancic, M.M., Timmer, J.C., Wildfang, E., Eroshkin, A., Salvesen, G.S., and Tao, W.A. (2007). Identification of proteolytic cleavage sites by quantitative proteomics. J. Proteome Res. 6, 2850-2858.   DOI   ScienceOn
33 Liu, H., Sadygov, R.G., and Yates, J.R., 3rd (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76, 4193-4201.   DOI   ScienceOn
34 Liu, Y., Sun, W., Zhang, K., Zheng, H., Ma, Y., Lin, D., Zhang, X., Feng, L., Lei, W., Zhang, Z., et al. (2007). Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer 56, 307-317.   DOI   ScienceOn
35 Dugaiczyk, A., Law, S.W., and Dennison, O.E. (1982). Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc. Natl. Acad. Sci. USA 79, 71-75.   DOI
36 Fanayan, S., Smith, J.T., Lee, L.Y., Yan, F., Snyder, M., Hancock, W.S., and Nice, E. (2013). Proteogenomic analysis of human colon carcinoma cell lines LIM1215, LIM1899, and LIM2405. J. Proteome Res. 12, 1732-1742.   DOI   ScienceOn
37 Freund, D.M., and Prenni, J.E. (2013). Improved detection of quantitative differences using a combination of spectral counting and MS/MS total ion current. J. Proteome Res. 12, 1996-2004.   DOI   ScienceOn
38 Gevaert, K., Goethals, M., Martens, L., Van Damme, J., Staes, A., Thomas, G.R., and Vandekerckhove, J. (2003). Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol. 21, 566-569.   DOI   ScienceOn
39 Ghosh, D., Yu, H., Tan, X.F., Lim, T.K., Zubaidah, R.M., Tan, H.T., Chung, M.C., and Lin, Q. (2011). Identification of key players for colorectal cancer metastasis by iTRAQ quantitative proteomics profiling of isogenic SW480 and SW620 cell lines. J. Proteome Res. 10, 4373-4387.   DOI   ScienceOn
40 Han, D., Moon, S., Kim, Y., Ho, W.K., Kim, K., Kang, Y., and Jun, H. (2012). Comprehensive phosphoproteome analysis of INS-1 pancreatic beta-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry. J. Proteome Res. 11, 2206-2223.   DOI   ScienceOn
41 Hoffman, P.C., Mauer, A.M., and Vokes, E.E. (2000). Lung cancer. Lancet 355, 479-485.   DOI   ScienceOn
42 Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., et al. (2004). UniProt: the universal protein knowledgebase. Nucleic Acids Res. 32, D115-119.   DOI   ScienceOn
43 Bauer, K.M., Lambert, P.A., and Hummon, A.B. (2012). Comparative label-free LC-MS/MS analysis of colorectal adenocarcinoma and metastatic cells treated with 5-fluorouracil. Proteomics 12, 1928-1937.   DOI   ScienceOn
44 Brannan, J.M., Sen, B., Saigal, B., Prudkin, L., Behrens, C., Solis, L., Dong, W., Bekele, B.N., Wistuba, I., and Johnson, F.M. (2009). EphA2 in the early pathogenesis and progression of non-small cell lung cancer. Cancer Prev. Res. (Phila) 2, 1039-1049.   DOI   ScienceOn
45 Brown, J.R., and Hartley, B.S. (1966). Location of disulphide bridges by diagonal paper electrophoresis. The disulphide bridges of bovine chymotrypsinogen A. Biochem. J. 101, 214-228.   DOI
46 Dawson, T.M., and Dawson, V.L. (2003). Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822.   DOI   ScienceOn
47 Domon, B., and Aebersold, R. (2006). Mass spectrometry and protein analysis. Science 312, 212-217.   DOI   ScienceOn
48 Li, F., Glinskii, O.V., Zhou, J., Wilson, L.S., Barnes, S., Anthony, D.C., and Glinsky, V.V. (2011). Identification and analysis of signaling networks potentially involved in breast carcinoma metastasis to the brain. PLoS One 6, e21977.   DOI   ScienceOn
49 Yoshimura, K., Meckel, K.F., Laird, L.S., Chia, C.Y., Park, J.J., Olino, K.L., Tsunedomi, R., Harada, T., Iizuka, N., Hazama, S., et al. (2009). Integrin alpha2 mediates selective metastasis to the liver. Cancer Res. 69, 7320-7328.   DOI   ScienceOn
50 Shibue, T., and Weinberg, R.A. (2009). Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc. Natl. Acad. Sci. USA 106, 10290-10295.   DOI   ScienceOn
51 Constantinescu, D., Gray, H.L., Sammak, P.J., Schatten, G.P., and Csoka, A.B. (2006). Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation. Stem Cells 24, 177-185.   DOI   ScienceOn
52 Anisowicz, A., Huang, H., Braunschweiger, K.I., Liu, Z., Giese, H., Wang, H., Mamaev, S., Olejnik, J., Massion, P.P., and Del Mastro, R.G. (2008). A high-throughput and sensitive method to measure global DNA methylation: application in lung cancer. BMC Cancer 8, 222.   DOI   ScienceOn