• 제목/요약/키워드: N-acetyl cysteine (NAC)

검색결과 81건 처리시간 0.029초

N-acetyl-L-cystein, N-acetyl-L-cystein Amide, Glutathione 및 Cysteamine 항산화제가 소 체외수정란의 발생에 미치는 영향 (The Effects of Antioxidants, N-acetyl-L-cystein, N-acetyl-L-cystein Amide, Glutathione or Cysteamine on the Development of in vitro Fertilized bovine Oocytes)

  • 김민수;김찬란;김남태;전익수;김성우
    • 한국수정란이식학회지
    • /
    • 제32권3호
    • /
    • pp.201-207
    • /
    • 2017
  • 소 난자의 체외 성숙 및 발달과정에서 항산화제의 첨가는 발생과정에 생성될 수 있는 ROS를 조절하여 체외발생에 도움을 주는 것으로 알려져 있으나 이에 대한 연구는 아직 미흡하다고 판단된다. 본 연구에서는 소 수정란의 성숙과정과 발생과정에서 ROS에 대한 방어 기작에 필요한 물질로 -SH기(thiol group)을 함유하고 있는 NAC, NACA, GSH 및 CYS를 첨가하여 COCs의 난자 성숙율과 체외 수정 후 수정란의 발생율을 조사하였다. 도축장 유래 난소의 성숙율은 항산화제 처리군과 대조군에서 차이를 보여주지 않았으나(p>0.05), 배반포 형성율은 0.1 mM CYS을 처리한 실험군에서 $32.3{\pm}5.0%$로 유의적으로 높게 관찰되었다(p<0.05). 항산화제 0.3 mM NAC, 0.2 mM NACA 또는 0.5 mM GSH를 처리하는 실험군에서 배반포 형성율은 각각 $18.8{\pm}3.7%$, $21.2{\pm}3.9%$$26.5{\pm}5.0%$로 조사되었다. 그러므로, 항산화 물질인 NAC, NACA, GSH 및 CYS을 난자의 성숙 및 수정란 배양과정에 첨가하면 난자의 성숙에 영향이 없으나, CYS처리군이 배반포형성율에 효과가 있음을 밝혔다(p<0.05).

Synthesis and Characterization of CdSe/CdS/N-Acetyl-L-Cysteine/Quercetin Nano-Composites and Their Antibacterial Performance

  • Wang, Kunjie;Li, Mingliang;Li, Hongxia;Guan, Feng;Zhang, Deyi;Feng, Huixia;Fan, Haiyan
    • 대한화학회지
    • /
    • 제59권2호
    • /
    • pp.136-141
    • /
    • 2015
  • We have discovered that quercetin, once coated on the CdSe and CdSe-CdS quantum dots (QDs), becoming highly water soluble. In the present work, we have successfully synthesized CdSe/CdS/N-Acetyl-L-Cysteine(NAC)/Quercetin nano-composites in the aqueous solution. The products were characterized using UV-vis spectroscopy, X-ray powder diffraction, fluorescence spectroscopy, and Fourier transform infrared spectroscopy. The transmission electron microscopy (TEM) tests indicated that our nano-composite products are highly stable with homogeneous particle size and great monodispersity. Quercetin coated nano-composite CdSe/CdS/NAC/Quercetin showed different fluorescence behavior from that of CdSe/CdS/NAC. Most amazingly, the synthesized CdSe/CdS/NAC/Quercetin nano-composite exhibits strong antibacterial activity. The combination of the strong fluorescence and its antibacterial activity makes the quercetin modified quantum dots as a potential candidate for cancer targeted therapy and other cancer treatments.

Effects of Benzyl Isothiocyanate and Its N-Acetylcysteine Conjugate on Induction of Detoxification Enzymes in Hepa1c1c7 Mouse Hepatoma Cells

  • Hwang, Eun-Sun
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.268-273
    • /
    • 2014
  • The induction of detoxification enzymes by benzyl isothiocyanate (BITC) and its synthetic N-acetyl-L-cysteine (NAC) conjugate (NAC-BITC) was examined in Hepa1c1c7 murine hepatoma cells. BITC and NAC-BITC inhibited Hepa1c1c7 cell growth in a dose-dependent manner. Cell growth was 4.5~57.2% lower in Hepa1c1c7 cells treated with $0.1{\sim}1.0{\mu}M$ BITC than in control-treated Hepa1c1c7 cells. The NAC-BITC treatment had a similar inhibitory pattern on Hepa1c1c7 cell growth; $0.5{\mu}M$ and $10{\mu}M$ NAC-BITC decreased cell growth by 13.6% and 47.4%, respectively. Treatment of Hepa1c1c7 cells with $0.1{\sim}2.0{\mu}M$ BITC also elicited a dose-response effect on the induction of quinone reductase quinone reductase (QR) activity and QR mRNA expression. Treatment with $1{\mu}M$ and $2{\mu}M$ BITC caused 1.8- and 2.8-fold inductions of QR mRNA, respectively. By comparison, treatment with $1{\mu}M$ and $2{\mu}M$ NAC-BITC caused 1.6-and 1.9-fold inductions of QR mRNA, respectively. Cytochrome P450 (CYP) 1A1 and CYP2E1 induction were lower in $0.1{\sim}2{\mu}M$ BITC-treated cells than in control-treated cells. CYP2E1 activity was 1.2-fold greater in $0.1{\mu}M$ NAC-BITC-treated cells than in control-treated cells. However, the CYP2E1 activity of cells treated with higher concentrations (i.e., $1{\sim}2{\mu}M$) of NAC-BITC was similar to the activity of control-treated cells. Considering the potential of isothiocyanatesto prevent cancer, these results provide support for the use of BITC and NAC-BITC conjugates as chemopreventive agents.

N-acetyl cysteine inhibits H2O2-mediated reduction in the mineralization of MC3T3-E1 cells by down-regulating Nrf2/HO-1 pathway

  • Lee, Daewoo;Kook, Sung-Ho;Ji, Hyeok;Lee, Seung-Ah;Choi, Ki-Choon;Lee, Kyung-Yeol;Lee, Jeong-Chae
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.636-641
    • /
    • 2015
  • There are controversial findings regarding the roles of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway on bone metabolism under oxidative stress. We investigated how Nrf2/HO-1 pathway affects osteoblast differentiation of MC3T3-E1 cells in response to hydrogen peroxide (H2O2), N-acetyl cysteine (NAC), or both. Exposing the cells to H2O2 decreased the alkaline phosphatase activity, calcium accumulation, and expression of osteoblast markers, such as osteocalcin and runt-related transcription factor-2. In contrast, H2O2 treatment increased the expression of Nrf2 and HO-1 in the cells. Treatment with hemin, a chemical HO-1 inducer, mimicked the inhibitory effect of H2O2 on osteoblast differentiation by increasing the HO-1 expression and decreasing the osteogenic marker genes. Pretreatment with NAC restored all changes induced by H2O2 to near normal levels in the cells. Collectively, our findings suggest that H2O2-mediated activation of Nrf2/HO-1 pathway negatively regulates the osteoblast differentiation, which is inhibited by NAC.

간접수용복 시멘트 처리로 유발된 활성산소종에 의한 치주줄기세포 독성 (Reactive oxygen species-mediated cytotoxicity of indirect restorative cement on periodontal stem cells)

  • 박소영
    • 한국치위생학회지
    • /
    • 제21권5호
    • /
    • pp.545-553
    • /
    • 2021
  • Objectives: This study aimed to investigate the cytotoxicity of Nexus RMGIC, an indirect restorative cement, on cell survival rate and reactive oxygen species (ROS) production in periodontal stem cells (PDSCs). Methods: PDSCs were incubated with serially diluted Nexus RMGIC eluates with and without the addition of N-acetyl-cysteine (NAC). Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The ROS generation was determined by measuring the fluorescence intensity for 2',7'-dichlorofluorescin diacetate. Results: Nexus RMGIC exposure decreased cell proliferation and cell survival rate in a dose-dependent manner (1:8, 1:4, 1:2, 1:1) in PDSCs. The cytotoxicity of Nexus RMGIC was inhibited by treatment with 10-mM NAC. In addition, the production of ROS was detected by immunofluorescence after PDSCs were exposed to Nexus RMGIC. However, ROS generation was significantly suppressed in the NAC pretreatment compared with the Nexus RMGIC group. Conclusions: Nexus RMGIC increased the cytotoxicity and ROS generation. ROS was involved in Nexus RMGIC-induced cell toxicity.

몰약(沒藥)이 자궁경부암세포(子宮經部癌細胞)(HeLa Cell)의 Apoptosis에 미치는 영향(影響) (Myrrha-induced Apoptosis in Human Cervical Carcinoma HeLa Cells)

  • 박종규;조옥현;김송백;조한백
    • 대한한방부인과학회지
    • /
    • 제19권1호
    • /
    • pp.97-110
    • /
    • 2006
  • Purpose : To address the ability of Myrrha (MY) to induce cell death, we investigated the effect of MY on apoptosis. In human cervical carcinoma HeLa cells, apoptosis occurred following MY exposure in a dose-dependent manner. Methods : We have tested several kinds of anti-oxidants to investigate the MY-induced apoptotic mechanism. Among the anti-oxidants, N-acetyl cysteine(NAC) or reduced glutathione (GSH) protects MY-induced apoptosis. NAC is an aminothiol and synthetic precursor of intracellular cysteine and GSH. To confirm the role of GSH in MY-induced apoptosis, methionine and cystathionine-glutathione extrusion inhibitors were treated in the presence of MY. Results : NAC, GSH, methionine or cystathionine led to protective effect against MY-induced apoptosis in HeLa cells. The GSH and GSH-associated reagents regulate MY-induced cytochrome c release and the resultant caspase-3 activation. Furthermore, the two specific inhibitors of carrier-mediated GSH extrusion, methionine and cystathionine demonstrate GSH extrusion occurs via a specific mechanism. While decreasing GSH extrusion and protecting against MY-induced apoptosis, methionine and cystathionine failed to exert anti-apoptotic activity in cells previously deprived of GSH. Conclusion : the target of the protection is indeed GSH extrusion. This shows that the protective effect is achieved by forcing GSH to stay within the cells during apoptogenic treatment. All this evidence indicates the extrusion of GSH precedes andis responsible for the apoptosis, probably by altering the intracellular redox state, thus giving a rationale for the development of redox-dependent apoptosis in MY-treated human cervical carcinoma HeLa cells.

  • PDF

A Pilot Examination of Oxidative Stress in Trichotillomania

  • Grant, Jon E.;Chamberlain, Samuel R.
    • Psychiatry investigation
    • /
    • 제15권12호
    • /
    • pp.1130-1134
    • /
    • 2018
  • Objective Trichotillomania is a relatively common illness whose neurobiology is poorly understood. One treatment for adult trichotillomania, n-acetyl cysteine (NAC), has antioxidative properties, as well as effects on central glutamatergic transmission. Preclinical models suggest that excessive oxidative stress may be involved in its pathophysiology. Methods Adults with trichotillomania provided a blood sample for analysis of compounds that may be influenced by oxidative stress [glutathione, angiotensin II, ferritin, iron, glucose, insulin and insulin growth factor 1 (IGF1), and hepcidin]. Participants were examined on symptom severity, disability, and impulsivity. The number of participants with out-of-reference range oxidative stress measures were compared against the null distribution. Correlations between oxidative stress markers and clinical measures were examined. Results Of 14 participants (mean age 31.2 years; 92.9% female), 35.7% (n=5) had total glutathione levels below the reference range (p=0.041). Other oxidative stress measures did not have significant proportions outside the reference ranges. Lower levels of glutathione correlated significantly with higher motor impulsiveness (Barratt Impulsiveness Scale sub-score) (r=0.97, p=0.001). Conclusion A third of patients with trichotillomania had low levels of glutathione, and lower levels of glutathione correlated significantly with higher motor impulsiveness. Because NAC is a precursor for cysteine, and cysteine is a rate limiting step for glutathione production, these results may shed light on the mechanisms through which NAC can have beneficial effects for impulsive symptoms. Confirmation of these results requires a suitable larger follow-up study, including an internal normative control group.

Fenbendazole의 항암활성에서 활성산소종의 관련성 (Involvement of reactive oxygen species in the anti-cancer activity of fenbendazole, a benzimidazole anthelmintic)

  • 한용;주홍구
    • 대한수의학회지
    • /
    • 제60권2호
    • /
    • pp.79-83
    • /
    • 2020
  • Fenbendazole (FBZ) is a benzimidazole anthelmintic that has been widely used in treatments for gastrointestinal parasites including pinworms and roundworms in animals. Recently, some studies demonstrated that FBZ has anti-cancer effects related to disruption of microtubule polymerization. In this study, we investigated whether FBZ has anti-cancer activity in HL-60 cells, a human leukemia cell line, and assessed its relationship with the production of reactive oxygen species (ROS). FBZ treatment at 0.25-1 μM significantly decreased the metabolic activity of HL-60 cells. The mitochondrial membrane potential of FBZ-treated HL-60 cells decreased in a concentration-dependent manner. Apoptosis analysis using annexin V-FITC/propidium iodide staining demonstrated that 1 μM FBZ increased the percentages of cells in apoptosis and necrosis. In addition, Hoechst 33342 staining showed the presence of broken nuclei in HL-60 cells treated with 0.5 and 1 μM FBZ. To investigate the anti-cancer mechanism of FBZ, HL-60 cells were treated with FBZ in the absence or presence of N-acetyl cysteine (NAC), an inhibitor of ROS production. NAC significantly recovered the decreased metabolic activity of HL-60 induced by 0.5 and 1 μM FBZ treatments. This study provides evidence that FBZ has anti-cancer activity in HL-60 cells provided, in part, via ROS production.

Effects of N-acetylcysteine on biofilm formation by MBR sludge

  • Song, WonJung;Lade, Harshad;Yu, YoungJae;Kweon, JiHyang
    • Membrane and Water Treatment
    • /
    • 제9권3호
    • /
    • pp.195-203
    • /
    • 2018
  • N-acetylcysteine (NAC) has been widely used as an initial mucolytic agent and is generally used as an antioxidant to help alleviate various inflammatory symptoms. NAC reduces bacterial extracellular polymeric substances (EPS) production, bacterial adhesion to the surface and strength of mature biofilm. The efficacy has been shown to inhibit proliferation of gram-positive and gram-negative bacteria. In membrane bioreactor (MBR) processes, which contain a variety of gram negative bacteria, biofilm formation has become a serious problem in stable operation. In this study, use of NAC as an inhibitor of biofilm contamination was investigated using the center for disease control (CDC) reactors with MBR sludge. Biomass reduction was confirmed with CLSM images of membrane surfaces by addition of NAC, which was more efficient as the concentration of NAC was increased to 1.5 mg/mL. NAC addition also showed decreases in EPS concentrations of the preformed biofilm, indicating that NAC was able to degrade EPS in the mature biofilm. NAC addition was also effective to inhibit biofilm formation by MBR sludge, which consisted of various microorganisms in consortia.