• Title/Summary/Keyword: N-Acetyl-Glucosamine

Search Result 74, Processing Time 0.027 seconds

Identification and Antifungal Antagonism of Chryseomomas luteola 5042 against Phytophthora capsici (고추역병균 Phytophthora capsici의 생육을 저해하는 Chryseomonas luteola 5042의 선발과 항진균성 길항작용)

  • 윤경현;이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.3
    • /
    • pp.186-193
    • /
    • 2001
  • A powerful antagonistic bacterium against Phytophthora capsici causing phytophthora blight of red pepper was isolated from the cultivated soil in Kyongju Korea, The bilogical control mechanisms of the isolated strain were caused by strong antifungal antibiotic, siderophore and cellulase. The strain was identified as Chryseomonas luteola by the cultural morphological and physiological characteristics. The opti- mal culture medium for the antibiotic production was determined as follows : 0.15%D(+) cellobiose, 0.55% $NH_4$CI, 0.01% KCI 0.7% $K_2$$HPO_4$ 0.2% $KH_2$PO$_4$ and 0.5% sodium citrate at pH 7.0 The optimal incubation time was 84 hours at $30^{\circ}C$ In pot bioassay, the treatment of C luteola 5042 protected red pepper plant against the blight of Phytophthora capsici.

  • PDF

Immunomodulatory effect on chitosan against Fowl typhoid infection (가금티푸스 감염에 대한 키토산의 면역반응)

  • Cho, Kyoung-Oh;Koh, Hong-Bum;Kim, Gye-Yeop
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.73-82
    • /
    • 2004
  • Chitosan is similar in structure to cellulose and are the second most abundant polysaccharides in nature, comprising the horny substance in the exoskeletons of crabs, shrimp and insects as well as fungi. This study was conducted to access the effect of immunomodulation responses of chitosan(N-acetyl-${\beta}$-D-glucosamine) chicken infected with in Fowl typhoid(Salmonella gallinarum). One-day-old broiler chicks were divided into eight groups: The 1st group was inoculated intra-peritoneally with chitosan and challenged intra-peritoneally with S. gallinarum. The 2nd group was inoculated intra-peritoneally with chitosan. The 3rd group was feeding with chitosan and intra-peritoneally inoculated with cyclophosphamide and challenged intra-peritoneally S. gallinarum. The 4th group was feeding with chitosan and intra-peritoneally with cyclophosphamide. The 5th group was feeding with chitosan and challenged intra-peritoneally with S. gallinarum. The 6th group was feeding with chitosan. The 7th group was challenged intra-peritoneally with S. gallinarum. The 8th group was nontreated-uninfected control group. The results shows that $CD4^+$, $CD8^+$ and B lymphocyte in lymphoid organs of chickens treated with chitosan increased in especially $CD4^+$, $CD8^+$ lymphocytes (p<0.05). The group of feeding chitosan showed the significantly increased $CD4^+$, $CD8^+$ and B lymphocyte than inoculated intra-peritoneally with chitosan. As the result suggests that the feeding of chitosan induced immunostimulatant effect than the inoculation intra-peritoeally of chitosan.

Preparation of Hyaluronic Acid Microspheres with Enhanced Physical Stability by Double Cross-link or Alginate (이중 가교제 또는 알긴산에 의해 물리적인 안정성이 향상된 히알루론산 마이크로입자의 제조)

  • Kim, Dong-Hwan;Song, Chung-Kil;Balakrishnan, Prabagar;Park, Chun-Geon;Choi, Ae-Jin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.69-74
    • /
    • 2011
  • Hyaluronic acid (HA) is a natural polymer consisting of disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine. It has a great potential and success in cosmetic and biomedical applications. However, native HA is highly soluble and easily metabolized by enzymes such as hyaluronidase. Thus, various studies have been reported on modifying the physicochemical properties of HA, while maintaining its biocompatibility. For controlled drug delivery, many trials for fabricating HA microspheres were achieved under chemical reaction. The HA microspheres fabricated to improve the physical stability of HA using adipic acid dihydrazide (ADH) by cross-linking reaction has been reported earlier, however it lacks the desired physical stability and rapidly decomposes by swelling or enzymes. Therefore, we prepared double cross-linked HA microspheres (DC-HA microspheres) and alginate containing HA microspheres (AC-HA microspheres) to enhance its physicochemical properties. DC-HA microspheres were prepared using trisodium trimetaphosphate (STMP) under crosslinking reaction after ADH cross-linking reaction. AC-HA microspheres were prepared by adding alginate as a networking polymer. These microspheres were characterized by morphology, particle size, zeta potential, stability against hyaluronidase. Results showed that the DC-HA and AC-HA microspheres are more stable than that of HA microspheres.

Enzymatic Hydrolysis of Crystalline Chitin in an Agitated Bead Reaction System and Its Reaction Characteristics

  • Lee, Yong-Hyun;Bae, Young-Ki;Jeong, Eui-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.432-438
    • /
    • 1996
  • Native crystalline chitin was hydrolyzed in an agitated bead reaction system using crude chitinase excreted from Aspergillus fumigatus JC-19. The reaction was enhanced significantly, and the concentration and yield of reducing sugar after 48 hours were measured to be 35.42 g/I (w/v) and 0.64, respectively, around 1.86 times higher than those of the conventional system that was carried out without glass beads. The effect of reaction conditions, such as the amounts of chitin, chitinase and glass beads, and the size of glass bead, were examined. Ball milled chitin was also hydrolyzed in the agitated bead reaction system, the conversion yield and reaction rate of ball milled chitin for 24 hours increased up to 0.87 and 48.02 g/I, respectively. Chitinase showed relatively high stability in the agitated bead reaction system, particularly in the presence of enzyme stabilizer, $Ca^{++}$, which played a critical role in preventing the deactivation of chitinase by the physical impact of glass beads. The variations of the structural features of chitin during the reaction were followed by SEM and X-ray diffraction, and the enhanced hydrolysis reaction was caused by both the fragmentation of chitin particles and the destruction of the crystalline structure owing to the synergic effects of the attrition of glass beads and the hydrolytic action of chitinase.

  • PDF

Characteristics and Cancerostatic Activity of the Starfish Lectin (별불가사리 렉틴의 특성 및 암 세포 성장저해 효과)

  • Jeune, Kyung-Hee;Park, Chae-Soo;Park, Won-Hark;Choi, Soo-Jeong;So, Myung-Suk;Chung, See-Ryun
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.421-432
    • /
    • 1997
  • A new lectin was partially purified from starfish,Asterina pectinifera by means of physiological saline extraction, salt fractionation, ion exchange chromatography and hy droxyapatite chromatography, and it was named APL. The biochemical properties of the APL were characterized. In addition, its effects on lymphocyte mitogenicity and cancer cell agglutinability were tested. The APL agglutinated nonspecifically human erythrocytes and rabbit blood cells. Agglutinability was decreased to 30% of control activity below pH 5 and above pH 9 and was relatively unstable at increasing temperatures above 60$^{\circ}C$. The activity was reduced by addition of two kinds of metal ions, $Ba^{2+},\;Mn^{2+}$ and chelating agent, EDTA. APL was proved to be glycoproteins containing 9% sugars. For carbohydrate specificity, it was found that the activity of APL was inhibited by D(+)-glucosamine, D(+)-galactosamine, stachyose, N-acetyl-galactosamine and methyl-${\alpha}$-D-galactopyranoside among 35 sugars tested. In amino acid composition, the contents of acidic amino acids such as aspartic acid and glutamic acid were relatively high. This result suggest that the isoelectric point would be in a lower range. APL was found that it promotes the division of human lymphocytes. APL was proved to be a potent agglutinin for cancer cells such as HeLa, L929 and L1210 cells. Significant changes on the HeLa cell surfaces affected by APL were observed under the electron microscope.

  • PDF

Structural Characteristics and Anti-inflammatory Activities of Chemically Sulfated-hyaluronic Acid from Streptococcus dysgalactiae (Streptococcus dysgalactiae로부터 분리된 히알루론산과 황화된 유도체의 구조와 항염증 활성)

  • Hong, Chang-Il;Jung, Eui-Gil;Han, Kook-Il;Kim, Yong Hyun;Lee, Sung Hee;Lee, Hong Sub;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.545-554
    • /
    • 2016
  • Hyaluronic acid (HA) is an important macromolecule in medical and pharmaceutical fields. HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid. This work aimed to confirm the structural characteristics and anti-inflammatory activities of HA and its chemically sulfated-HA. HA was produced from a fed-batch fermentation process using Streptococcus dysgalactiae in a 5 l bioreactor. HA was isolated water-soluble form (HA-WS) and water-insoluble form (HA-WI) from culture medium, and was obtained chemically sulfated-derivative (S-HA) that resulted in a 90% yield from HA-WI. The structural features of the sulfated- HA (S-HA) were investigated by FT-IR and 1H-NMR spectroscopy. The FT-IR and NMR patterns revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. dysgalactiae. The anti-inflammatory activities of HA and S-HA were examined on LPS-induced RAW 264.7 cells. S-HA was significantly inhibited production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the gene levels of iNOS and COX-2, which are responsible for the production of NO and PGE2, respectively. Furthermore, S-HA also suppressed the overproduction of pro-inflammatory cytokine TNF-α (<80 pg/ml) and IL-6 (<100 pg/ml) compared to that of HA-WI. The present study clearly demonstrates that HA-S exhibits anti-inflammatory activities in RAW 264.7 macrophage cells.

Development of High-Functional Hyaluronic Acid/Salmon Extract Formulation Using Gamma-Ray (감마선을 이용한 고기능성 히알루론산/연어추출물 제형개발)

  • Kweon, Dong-Keon;Shim, Jae-Goo;Ha, Man
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • Hangover after drinking is different from person to person symptoms and degree, but usually thirst, fatigue, headache, general boredom, gastrointestinal disorder, vomiting, diarrhea, deficiency of vitamin appears. This hanging phenomenon is caused by the action of precursors such as ethyl acetate and acetaldehyde, which are the by products of fermentation contained in alcohol and alcohol accumulated in hepatocytes and body. In order to solve the hangover phenomenon, the same Origin as polysaccharide Polydeoxyribonucleotide, which is a nucleic acid-sugar-phosphate complex, which is a semen or testicular extract in salmon extract, and a water soluble salmon extract powder having the same structure and lower price than Polydeoxyribonucleotide And D-Glucuronic acid and N-Acetyl glucosamine. It has excellent biocompatibility, viscoelasticity and moisturizing power. It has effect on reduction of body water loss and skin moisture content in hangover phenomenon. It is antioxidant and skin moisturizing effect Hyaluronic acid was irradiated with gamma rays, and the composition was prepared by using the salmon extract powder and the main raw material. The ethanol degradation, the acetaldehyde reduction amount, the blood acetaldehyde concentration and the acetic acid concentration were measured to evaluate the alcoholysis effect, Skin moisture evaporation rate To examine the evaluation unit water content of the skin was improved determine whether the antioxidant and provide skin moisturizing effect. The addition of ethanol extracts of salmon extracts showed a decrease of 5 to 7 times compared with no addition, and a decrease of 3 to 5 times of acetaldehyde. In addition, the change of acetaldehyde concentration and acetic acid concentration in blood showed a rapid decrease compared to the no - added control group. In addition, when the raw material of hyaluronic acid was used, skin moisture content was high and skin moisture evaporation amount was decreased. Therefore, hyaluronic acid, which is a polysaccharide polymer, has excellent viscoelasticity and moisturizing ability, It is considered to provide antioxidant and skin moisturizing effect. Therefore, it can be said that the composition containing salmon extract powder and hyaluronic acid as a main ingredient is effective for the hangover phenomenon which occurs after drinking.

Purification and Biochemical Characterization of Lectin from Viscum album (겨우살이 Lectin의 정제 및 생화학적 특성)

  • Jang, Cheol-Su;O, Mi-Jeong;No, Gwang-Su
    • KSBB Journal
    • /
    • v.14 no.5
    • /
    • pp.578-584
    • /
    • 1999
  • The lectin was purified through 0.15 M NaCl extraction, ammonium sulfate precipitation, sepharose 4B affinity chromatography and gel filtration using sephadex G-150 from the leaves of Visum album collected in Mt. Duk Yu. The final gel filtration step resulted in 11.64 folds purification with 0.14% of recovery yield. We also performed biochemical characterization of the purified Visum album lectin. HPLC analysis of lectin purified by gel filtration revealed a singel peak. The analysis of the purified lectin by SDS-PAGE showed a tetramer composed of two identical subunits with molecular weights of 32 and 30 kDa. The lectin was a glycoprotein containing 14.4% carbohydrate, which consist of glucose, fructose, arabinose and xylose, and the amino acids such as phenylalanine, lysine and tyrosine. The purified lectin agglutinated human red blood cell types with similar potency, but when tested against red blood cells from mouse, bovine, rabbit, chicken and porcine, significant difference in potency were observed. Hemaggluting activity was inhibited by D-galactose, D-mannose, D-lactose and D-raffinose, but not by D-glucose, D-glucosamine, D-mannosamine, L-fructose, D-xylose, D-arabinose, D-galacturonic acid, D-fructose, L-rhamnose and N-acetyl-D-galactosamine. The optimal pH and thermal stability of the purified lectin were pH 4.0-7.0 and 20-5$0^{\circ}C$, respectively.

  • PDF

Screening of Hyaluronidase Inhibitor in Korean Medicinal Plants (천연물로부터 히알루로니다아제 저해제 검색)

  • Hwang, Seon Gu;Yang, Anna;Kim, Soo Jung;Kim, Min Kee;Kim, Sung Soo;Oh, Hyun Jung;Lee, Jung Dae;Lee, Eun Ju;Nam, Kung-Woo;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.498-504
    • /
    • 2014
  • Mammalian hyaluronidases (HAase, EC 3.2.1.35) are a family of enzymes that hydrolyse N-acetyl-D-glucosamine (1-4) glycosidic bonds in hyaluronic acid, which is found in skin, cartilage, and the vitreous body. Although HAase is generally present in an inactive form within subcellular lysosomes, it is released in an active form in some types of inflammation and tissue injuries, thereby contributing to the inflammatory response. The HAase inhibitory activity of 500 methanolic extracts of 500 species from medicinal plants was screened using a Morgan microplate assay. The viscosity of the hyaluronic acid was measured with an Ubbelohde viscometer. Three MeOH extracts inhibited more than 50% of HAase activity at a concentration of 2 mg/ml. HAase inhibitory rates (%) of three species of medicinal plant extracts, Styrax japonica, Deutzia coreana, and Osmanthus insularis were 57.28%, 53.50%, and 53.19%, respectively. The rate of HAase inhibition of the extracts was dose dependent. In the HAase inhibitory assay using the Ubbelohde viscometer, the results were in good agreement with the results from the Morgan assay. The results suggest that HAase inhibitory compounds extracted from the stem of S. japonica, D. coreana, and O. insularis might be multifunctional and prevent the degradation of hyaluronic acid and the induction of allergic reactions and inflammation.

Characterization of Streptococcus parauberis isolated from cultured Olive flounder, Paralichthys olivaceus in the Jeju Island (제주도 양식넙치 (Paralichthys olivaceus)로부터 분리한 비 용혈성 연쇄구균의 동정)

  • Kang, Chul-Young;Kang, Bong-Jo;Moon, Young-Gun;Kim, Ki-Young;Heo, Moon-Soo
    • Journal of fish pathology
    • /
    • v.20 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • This study was performed to identity non hemolytic streptococcus from cultured flounder (Paralichthys olivaceus) with Streptococcosis in the Jeju island. The result of BIOLOGTM test was Streptococcus uberis that simility of 0.5 and 98% identified in MicroLogTM system (Release 4.05). Carbohydrate utility pattern was dextrin, N-acetyl-D-glucosamine, arbutin, maltose, maltotriose, D-cellobiose, D-fructose, D-mannose, α-D-glucose, D-mannitol, β-methyl D-glucoside, salicin, sucrose, D-trehalose, pruvatic acid methyl ester, mono-methyl succinate, glycerol. In addition hemolysis test for S. parauberis and were S. iniae hemolysis in BAP (Blood agar plate). Antibiotic test for S. parauberis were Ampicillin, Amoxicillin and Fluoroquinolone sensitivity. Mutiplex PCR assay were detected S. pauberis (718 bp), S. iniae (870 bp) L. garviae (1,100 bp). Dectected S. parauberis (718 bp) were result of 16S rRNA sequence identified with S. parauberis (Gene bank accession number X89967). All isolated S. parauberis that with bouned by one group. The result were S. pauberis that γ-hemolytic chain form cocci and negative reaction of catalase, Multiplex PCR assay were 718 bp amplicon size.