• 제목/요약/키워드: N fertilizer

검색결과 1,960건 처리시간 0.034초

Seedling Growth and Yield of Rice as Applying Slow Release Nitrogen Fertilizers Mixed with Seed Bed Soil in Seedling Box

  • Lee, Suk-Soon;Lee, Dong-Wook
    • 한국작물학회지
    • /
    • 제46권4호
    • /
    • pp.289-295
    • /
    • 2001
  • Experiments were conducted to find out the optimum level of slow release N fertilizers when total amounts of nitrogen required throughout the growing season in paddy were applied in the soil of seedling box. To evaluate the emergence rate and growth of rice seedlings, five levels of Meister (MS) 10, MS S10, and latex coated urea (LCU) which are equivalent to 0, 40, 60, 80, and 100kg N h $a^{-l}$ were mixed in soil of the seedling box. Emergence rate differed depending on the fertilizers and N levels; in MS 10 plots the emergence rate was 40.8% at 40kg N h $a^{-l}$ and no seedlings were emerged at the higher levels, in MS S10 plots higher than 80% at all the N levels, and decreased with the N levels from 70.0% at 40 kg N h $a^{-l}$ to 59.5% at 100kg N h $a^{-l}$ of LCU. Seedling started to wilt at 40 kg N h $a^{-l}$ of MS 10 and 80 and 100 kg N h $a^{-l}$ N of LCU on the 8th day after sowing, while seedling growth was normal at all the levels of MS S10. Field performance of rice was evaluated at the 0, 30, 60, 90, 120kg N h $a^{-l}$ of MS S10 applied in the soil of seedling box and N was not applied in paddy. Grain yield at 90 and 120kg N h $a^{-l}$ of MS S10 was similar to conventional urea split application (120 kg N h $a^{-l}$), but significantly higher compared to 30 and 60kg N h $a^{-l}$ of MS S10. Fertilizer N recovery decreased with N levels and the N recovery at 90 kg N h $a^{-l}$ of MS S10 and conventional urea split application were 62.2 % and 44.2%, respectively, with similar grain yield. The optimum level of MS S10 to be applied in seedling box seems to be about 90 kg N h $a^{-l}$ considering grain yield, price of fertilizer, labor applying fertilizer, and fertilizer N recovery.d fertilizer N recovery.

  • PDF

Effect of Long Term Fertilization on Soil Carbon and Nitrogen Pools in Paddy Soil

  • Lee, Chang Hoon;Jung, Ki Youl;Kang, Seong Soo;Kim, Myung Sook;Kim, Yoo Hak;Kim, Pil Joo
    • 한국토양비료학회지
    • /
    • 제46권3호
    • /
    • pp.216-222
    • /
    • 2013
  • Fertilizer management has the potential to promote the storage of carbon and nitrogen in agricultural soils and thus may contribute to crop sustainability and mitigation of global warming. In this study, the effects of fertilizer practices [no fertilizer (Control), chemical fertilizer (NPK), Compost, and chemical fertilizer plus compost] on soil total carbon (TC) and total nitrogen (TN) contents in inner soil profiles of paddy soil at 0-60 cm depth were examined by using long-term field experimental site at $42^{nd}$ years after installation. TC and TN concentrations of the treatments which included N input (NPK, Compost, NPK+Compost) in plow layer (0-15 cm) ranged from 19.0 to 26.4 g $kg^{-1}$ and 2.15 to 2.53 g $kg^{-1}$, respectively. Compared with control treatment, SOC (soil organic C) and TN concentrations were increased by 24.1 and 31.0%, 57.6 and 49.7%, and 72.2 and 54.5% for NPK, Compost, and NPK+Compost, respectively. However, long term fertilization significantly influenced TC concentration and pools to 30 cm depth. TC and TN pools for NPK, Compost, NPK+Compost in 0-30 cm depth ranged from 44.8 to 56.8 Mg $ha^{-1}$ and 5.78 to 6.49 Mg $ha^{-1}$, respectively. TC and TN pools were greater by 10.5 and 21.4%, 30.3 and 29.6%, and 39.9 and 36.3% in N input treatments (NPK, Compost, NPK+Compost) than in control treatment. These resulted from the formation and stability of aggregate in paddy soil with continuous mono rice cultivation. Therefore, fertilization practice could contribute to the storage of C and N in paddy soil, especially, organic amendments with chemical fertilizers may be alternative practices to sequester carbon and nitrogen in agricultural soil.

가축액상분뇨 사용이 헤어리베치 질소흡수와 후작 배추 생육에 미치는 영향 (Effects of Animal Slurry Application on Nitrogen Uptake of Hairy Vetch and Growth of Chinese Cabbage)

  • 류종원
    • 한국유기농업학회지
    • /
    • 제13권2호
    • /
    • pp.211-221
    • /
    • 2005
  • This experiment was conducted to evaluate the effect of animal slurry on nitrogen uptake of hairy vetch and growth of chinese cabbage in cropping system. Hairy vetch was seeded on September 20 in 2003 . We examined the effect of cover crop(hairy vetch (Vicia villosa Roth) and slurry application(0, l00, 200kg N/ha) on yield and N uptake. Dry matter yield and nitrogen uptake of hairy vetch were measured. The chinese cabbage succeeding cover crop was harvested in 2004. The nitrogen uptake of hairy vetch was 84, 121, 148kg N/ha respectively, when the slurry application was 0, 100 and 200kg N/ha. In addition. N uptake of hairy vetch at the plot of 100kg and 200 kg N/ha slurry were 44% and 76% higher than that of the plot without slurry application respectively. Slurry application of hairy vetch could increase nitrogen uptake by application of green manure at the harvesting time. the content of organic matter and P-content of soil with hairy vetch plot was higher than that of fallow plot due to inhibition of soil erosion. The organic matter levels tend to improve with the addition of hairy vetch. Hairy vetch could improve soil quality by reducing erosion compared with bare fallow. The green manure of hairy vetch with animal slurry maintained soil nutrient and reduced nitrogen fertilizer of chinese cabbage. The hairy vetch residues decomposed rapidly releasing half of their residues within 40 days after burial. The yield of chinese cabbage was 90% in the plot of manure of hairy vetch compared with chemical fertilizer. The yield in the plot treated with green manure of hairy vetch and 50% of chemical fertilizer was reduced 5% less than that of chemical fertilizer. Therefore, it was estimated that the green manure of hairy vetch-chinese cabbage cropping system could reduce nitrogen chemical fertilizer as much as 84~148kgN/ha. the green manure of hairy vetch with animal slurry maintained soil nutrient and reduced nitrogen fertilizer of chinese cabbage.

  • PDF

Interaction between different nitrogen fertilizer levels and maize-bean intercropping patterns

  • Sadeghi, Hossein;Kazemeini, Seyed Abdolreza
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.269-277
    • /
    • 2012
  • In order to investigate the effects of different maize-bean intercropping patterns, and of nitrogen fertilizers on morphological and yield related traits, a factorial study based on Randomized Complete Block Design (RCBD) was performed during the 2010 and 2011 growing seasons in a research filed of Shiraz University, Iran. The first factor of the study was seven different ratios of Maize-Bean intercropping system (Maize sole cropping, Bean sole cropping, and intercropping of maize/bean at the ratios of 1/3, 1/1, 2/3, 3/2 and 3/1) and the second factor was three nitrogen (N) fertilizer application levels (0, 100 and 200 kg N/ha). Results showed that with respect to increasing the levels of N fertilizer, the yield of bean sole cropping decreased but the yield of maize sole cropping increased. On the other hand, in intercropping systems with N fertilizer application, the yield of both crops increased. Results of total land equivalent ratio (LER) for both crops showed that the highest LER value under both 100 and 200 kg N/ha application was that of M1B1 (1 seed of maize after 1 seed of bean, consecutively, on a row with same distance). Under no N fertilizer application the highest LER value was that of M2B3 (2 seeds of maize after 3 seeds of bean, consecutively, on a row with same distance). Overall, it can be concluded that M1B1 is the best intercropping pattern in maize-bean intercropping systems and that the application of N fertilizer can be effective within practical settings of intercropping agriculture, resulting in higher yields.

Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors

  • Kang, Seong Soo;Kim, Yoo-Hak;Hong, Soon-Dal
    • 한국토양비료학회지
    • /
    • 제47권3호
    • /
    • pp.217-224
    • /
    • 2014
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the $40^{th}$ DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.

Identifying N sources that affect N uptake and assimilation in Vanda hybrid using 15N tracers

  • Panjama, Kanokwan;Ohyama, Takuji;Ohtake, Norikuni;Sato, Takashi;Potapohn, Nuttha;Sueyoshi, Kuni;Ruamrungsri, Soraya
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • 제59권6호
    • /
    • pp.805-813
    • /
    • 2018
  • Vanda is an aerial tropical orchid native to Thailand and nitrogen (N) fertilizer is mainly used to promote its growth and quality. However, little is known about the characteristics of N absorption and assimilation in Vanda. The objective of this study was to determine the appropriate source of N for Vanda cultivation. In this experiment, shoots and roots of Vanda 'Ratchaburi Fuchs-Katsura' were sprayed weekly with 100 ml of $^{15}N$ tracer solution (1) 10 mM of $^{15}NO_3{^-}$, (2) 5 mM of $^{15}NO_3{^-}$ plus 5 mM of $NH_4{^+}$, (3) 5 mM of $NO_3{^-}$ plus 5 mM of $^{15}NH_4{^+}$ and (4) 10 mM of $^{15}NH_4{^+}$. The results indicated that plants fed with a combined N fertilizer gave the highest of $^{15}N$ use efficiency ( $^{15}NUE$) of about 21.8%, 30 days after the first feeding (DAF), compared with those fed sole sources of $^{15}NO_3{^-}$ (21.0%) and $^{15}NH_4{^+}$ (16.6%). However, a sole nitrate fertilizer or combination fertilizer did not significantly affect the total N and labelled N content. Alanine was a major amino acid found in leaves and roots at 7 DAF, whereas glutamine was mainly found in stems. At 30 DAF, tyrosine and alanine became major components in the leaves, and glutamine decreased in stems when plants were fed with a single $^{15}NH_4{^+}$ source.

NPK의 시비수준이 호프수량에 미치는 영향에 관한 연구 (The Study on the Effects of Various N.P.K. Fertilization Levels on Hop Yield)

  • 임웅규
    • Journal of Plant Biology
    • /
    • 제19권2호
    • /
    • pp.37-40
    • /
    • 1976
  • The experiment designed to obtain information relative to the favourable levels to apply N.P.K fertilizer was conducted at the hop garden of College of Agriculture, S.N.U. in 1975. The varieties used were 1-year-old Cascade, Hallertau and Shinshuwase. The design of the experiment was a split plot design with 3 replications. Yields were recorded as fresh weight of harvested cones in gram per split plot. The results obtained from the experiment were as follows: 1. The results from analysis of the data for 3 varieties indicated that significant increase in yield were found due to the application of 46g N, 20g P2O5 and 60kg K2O per plant, although higher level thn the above caused a remarkable reduction of yield. 2. The individual fresh weight of harvested cones was significantly increased with application of nitrogen, phosphorus and potash, regardless of fertilizer levels. 3. Analysis of variance for yields showed that there were no significant interaction between fertilizer level and variety, i.e., all varieties used might require the same fertilizer level.

  • PDF

유기질비료 시용시 흑색비닐 멀칭이 봄 배추 생육에 미치는 영향 (Chinese Cabbage Growth Effected by Black Vinyl Mulching and Organic Fertilizer Application in Spring Season)

  • 윤홍배;이종식;이예진;김록영;송요성;한승갑;이용복
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.1107-1111
    • /
    • 2011
  • 화학비료 사용량을 줄이고 화학비료를 대체할 수 있는 유기질비료 사용효과를 조사하기 위해 배추의 생육 및 질소 이용효과를 평가하였다. 처리는 배추재배의 NPK 표준시비구 ($N-P_2O_5-K_2O$ : $320-78-198kg\;ha^{-1}$)를 비롯하여, NPK 시비구의 질소시비량을 기준한 유기질 100% (OF100), 유기질70%+질소30% (OF70+N30), 유기질30%+질소70% (OF30+N70) 처리하였고, 비닐 멀칭효과를 분석하고자 동일 처리구에 각각 비멀칭과 흑색비닐멀칭재배를 실시하였다. 배추 재배기간동안 지온을 조사한 결과, 흑색비닐멀칭이 비멀칭재배에 비해 일일 평균 $2^{\circ}C$ 높았다. 토양 중 무기태질소함량은 OF100 처리구가 가장 높았으며, 배추수량도 OF100 처리구에서 흑색비닐멀칭구가 비멀칭구에 비해 46% 증가하였다. 질소이용율은 비멀칭 재배시 NPK 처리구 44%, OF100구는 26%, OF70+N30구는 21%, OF30+N70구는 27%이었고, 흑색비닐멀칭 재배시 NPK처리구는 56%, OF100구는 55%, OF70+N30구는 51%, OF30+N70은 39%의 질소이용율 각각 나타내었다. 따라서 유기질비료와 화학비료를 병용하고 흑색비닐 멀칭을 실시하면 질소 이용율을 높임으로서 비료를 절감을 할 수 있는 방법 중 하나라고 판단되었다.

Mineral- and Tissue-Specific Metabolic Changes in Tomato (Lycopersicon esculentum L.) Plants Grown under NPK-Starved Conditions

  • Sung, Jwakyung;Lee, Yejin;Lee, Seulbi;Lim, Jungeun;Lee, Deogbae
    • 한국토양비료학회지
    • /
    • 제49권6호
    • /
    • pp.689-698
    • /
    • 2016
  • Specific metabolic network responses to mineral starvation are not well-defined. We examined a detailed broad-scale identification of metabolic responses of tomato leaf and root to N, P or K starvation. Tomato plants were grown hydroponically under optimal (5 mM N, 0.5 mM P, or 5 mM K) and starved (0.5 mM N, 0.05 mM P, or 0.5 mM K) conditions and metabolites were measured by LC-MS and GC-MS. Overall, the levels of metabolites (lipids, nucleotides, peptides and secondary metabolites) presented in this paper largely showed mineral- and tissue-specific responses. Most strikingly, G3P (glycerol-3-P), GPC (glycerol-P-choline) and choline phosphate responded differently to a type of mineral; an increase in N or K starvation and a decrease in P starvation. A dramatic increase in the levels of secondary metabolites, in particular, rutin and chlorogenate in both tomato tissues during N starvation were observed. Based on these data, it is necessary to clearly elucidate an unknown event taking place in a variety of abiotic impacts, and we are now studying to expand our knowledge on metabolic- and proteomic-responses using GS-MS and LC-MS.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • 한국토양비료학회지
    • /
    • 제49권5호
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.