Browse > Article
http://dx.doi.org/10.7745/KJSSF.2016.49.6.689

Mineral- and Tissue-Specific Metabolic Changes in Tomato (Lycopersicon esculentum L.) Plants Grown under NPK-Starved Conditions  

Sung, Jwakyung (Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA)
Lee, Yejin (Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA)
Lee, Seulbi (Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA)
Lim, Jungeun (Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA)
Lee, Deogbae (Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.49, no.6, 2016 , pp. 689-698 More about this Journal
Abstract
Specific metabolic network responses to mineral starvation are not well-defined. We examined a detailed broad-scale identification of metabolic responses of tomato leaf and root to N, P or K starvation. Tomato plants were grown hydroponically under optimal (5 mM N, 0.5 mM P, or 5 mM K) and starved (0.5 mM N, 0.05 mM P, or 0.5 mM K) conditions and metabolites were measured by LC-MS and GC-MS. Overall, the levels of metabolites (lipids, nucleotides, peptides and secondary metabolites) presented in this paper largely showed mineral- and tissue-specific responses. Most strikingly, G3P (glycerol-3-P), GPC (glycerol-P-choline) and choline phosphate responded differently to a type of mineral; an increase in N or K starvation and a decrease in P starvation. A dramatic increase in the levels of secondary metabolites, in particular, rutin and chlorogenate in both tomato tissues during N starvation were observed. Based on these data, it is necessary to clearly elucidate an unknown event taking place in a variety of abiotic impacts, and we are now studying to expand our knowledge on metabolic- and proteomic-responses using GS-MS and LC-MS.
Keywords
Metabolomics; Mineral deficiency; Lipids; Nucleotides; Peptides; Secondary metabolites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Peterson, T.A., Nieman, R.H., Clark, R.A., 1988. Salt stress causes acceleration of purine catabolism and inhibition of pyrimidine salvage in Zea mays root tips. J. Exp. Bot. 207:1389-1395.
2 Plaxton, W.C. 2004. Plant response to stress: biochemical adaptations to phosphate deficiency. In Encycopedia of Plant and Crop Science. Edited by Goodman, R. Marcel Dekker Inc., New York pp. 976-980.
3 Roscher, A., L. Emsley, P. Raymond, and C. Roby. 1998. Unidirectional steady state rates of central metabolism enzymes measured simultaneously in a living plant tissue. J. Biol. Chem. 273:25053-25061.   DOI
4 Scheible, W., R. Morcuende, T. Czechowski, C. Fritz, D. Osuna, N. Palacios-Rojas, D. Schindelasch, L. Thimm, M.K. Udvardi, and M. Stitt. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol. 136:2483-2499.   DOI
5 Stasolla, C., N. Loukanina, H. Ashihara, E.C. Yeung, and T.A. Thorpe. 2006. Changes of purine and pyrimidine nucleotide biosynthesis during shoot initiation from epicotyls expalnts of white spruce (Picea glauca). Plant Sci. 171:345-354.   DOI
6 Storey, J. and R. Tibshirani. 2003. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100:9440-9445.   DOI
7 Sung, J., S. Lee, Y. Lee, S. Ha, B. Song, T. Kim, B.M. Waters, and H.B. Krishnan. 2015. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition, Plant Sci. 241:55-64.   DOI
8 Takahashi, H., T. Imamura, A. Miyagi, and H. Uchimiya. 2012. Comparative metabolomics of developmental alterations caused by mineral deficiency during in vitro culture of Gentiana triflora. Metabolomics 8:154-163.   DOI
9 Urbanczyk-Wochniak, E. and A.R. Fernie. 2005. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J Exp. Bot. 56:309-321.   DOI
10 Tschoep, H., Y. Gibon, P. Carllo, P. Armengaud, M. Szecowka, A. Nunes-Nesi, A.R. Fernie, K. Koehl, and M. Stitt. 2009. Adjustment of growth and central metabolism to a mild but sustained nitrogen limitation in Arabidopsis. Plant, Cell and Environ. 32:300-318.   DOI
11 Van der Rest, B., A. Boisson, E. Gout, R. Bligny, and R. Douce. 2002. Glycerophosphocholine metabolism in higher plant cells. Evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol. 130:244-255.   DOI
12 Bundy, J.G., M.P. Davey, and M.R. Viant. 2009. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3-21.   DOI
13 Akatsu, M., Y. Hosoi, H. Sasamoto, and H. Ashihara. 1996. Purine metabolism in cells of a mangrove plant, Sonneratia alba, in tissue culture. J. Plant Physiol. 149:133-137.   DOI
14 Amtmann, A., S. Troufflard, and P. Armengaud. 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plant 133:682-691.   DOI
15 Amtmann, A. and P. Armengaud. 2009. Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr. Opin. Plant Biol. 12:275-283.   DOI
16 Armengaud, P., R. Sulpice, A.J. Miller, M. Stitt, A. Amtmann, and Y. Gibon. 2009. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol. 150:772-785.   DOI
17 Ashihara, H. and T. Ukaji. 1986. Inorganic phosphate absorption and its effect on adenosine 5'-triphosphate level in suspension cultured cells of Catharanthus roseus. J. Plant Physiol. 124:77-85.   DOI
18 Aubert, S., E. Gout, R. Bligny, D. Marty-Mazars, F. Barrieu, J. Alabouvette, F. Marty, and R. Douce. 1996. Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J. Cell Biol. 133:1251-1263.   DOI
19 Awai, K., E. Marechal, M.A. Block, D. Brun, T. Masuda, H. Shimada, K.I. Takamiya, H. Ohta, and J. Joyard. 2001. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 98:10960-10965.   DOI
20 Chishaki, N. and T. Horiguchi. 1997. Responses of secondary metabolism in plants to nutrient deficiency. Soil Sci. Plant Nutr. 43:987-991.   DOI
21 Hernandez, G., M. Ramirez, O. Valdes-Lopez, M. Tesfaye, M.A. Graham, T. Czechowski, A. Schlereth, M. Wandrey, A. Erban, F. Cheung, H.C. Wu, M. Lara, C.D. Town, J. Kopka, M.K. Udvardi, and C.P. Vance. 2007. Phosphorus stress in common bean: root transcript and metabolic responses. Plant Physiol. 144:752-767.   DOI
22 Dancer, J., R. Veith, R. Feil, E. Komor, and M. Stitt. 1990. Independent changes of inorganic pyrophosphate and ATP/ADP or UTP/UDP ratios in plant cell suspension cultures. Plant Sci. 66:59-63.   DOI
23 Essigmann, B., S. Guler, R.A. Narang, D. Linke, and C. Benning. 1998. Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 95:1950-1955.   DOI
24 Evans, A.M., C.D. Dehaven, T. Barrett, M. Mitchell, and E. Milgram. 2009. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 81:6656-6667.   DOI
25 Gaude, N., C. Brehelin, G. Tischendorf, F. Kessler, and P. Dormann. 2007. Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J. 49:729-739.   DOI
26 Hartel, H., P. Dormann, and C. Benning. 2001. DGD1-independent biosynthesis of extraplastidic galactolipds following phosphate deprivation in Arabidopsis. Proc. Natl. Acad. Sci. USA 97:10649-10654.
27 Kelly, A.A. and P. Dormann. 2002. DGD2, an Arabidopsis gene encoding a UDP-galactose dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate limiting conditions. J. Biol. Chem. 277:1166-1173.   DOI
28 Hirai, M.Y., M. Yano, D.B. Goodenowe, S. Kanaya, T. Kimura, M. Awazuhara, M. Arita, T. Fujiwara, and K. Saito. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 101:10205-10210.   DOI
29 Huang, C.Y., U. Roessner, I. Eickmeier, Y. Genc, D.L. Callahan, N. Shirley, P. Langridge, and A. Bacic. 2008. Metabolite profiling reveals distinct changes in carbon and nitrogen metabolism in phosphate-deficient barley plants (Hordeum vulgare L.). Plant Cell Physiol. 49:691-703.   DOI
30 Journet, E.P., R. Bligny, and R. Douce. 1986. Biochemical changes during sucrose deprivation in higher plant cells. J. Biol. Chem. 261:3193-3199.
31 Nikiforova, V.J., B. Gakiere, S. Kempa, M. Adamik, L. Willmitzer, H. Hesse, and R. Hoefgen. 2004. Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J. Exp. Bot. 55:1861-1870.   DOI
32 Kelly, A.A., J.E. Froehlich, and P. Dormann. 2003. Disruption of the two digalactosyldiacylglycerol synthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 15:2694-2706.   DOI
33 Kusano, M., A. Fukushima, H. Redestig, and K. Saito. 2011. Metabolomic approaches toward understanding nitrogen metabolism in plants. J. Exp. Bot. 62:1439-1453.   DOI
34 Matt, P., A. Krapp, V. Haake, H.P. Mock, and M. Stitt. 2002. Decreased rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. The Plant J. 30:663-677.   DOI
35 Menegus, F. and G. Fronza. 1985. Modulation of glycerophosphorylcholine and glycerophosphorylethanolamine in rice shoots by the eivironment oxygen level. FEBS Lett. 18:151-154.
36 Nieman, R.H., R.A. Clark, D. Pap, G. Ogata, and E.V. Mass. 1988. Effects of salt stress on adenine and uridine nucleotide pools, sugar and acid-soluble phosphate in shoot of pepper and safflower. J. Exp. Bot. 39:301-309.   DOI
37 Okazaki, K., N. Oka, T. Shinano, M. Osaki, and M. Takebe. 2008. Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution. Plant Cell Physiol. 49:170-177.   DOI
38 Peterson, T.A., R.H. Nieman, and R.A. Clark. 1987. Nucleotide metabolism in salt-stressed Zea mays L. root tips I. Adenine and uridine nucleotides. Plant Physiol. 85:984-989.   DOI