• Title/Summary/Keyword: N and P Removal

Search Result 999, Processing Time 0.03 seconds

A Study on the Decompressed Ammonia Stripping from Ammonia Contained Wastewater (폐수의 감압 암모니아 탈기에 관한 연구)

  • 신대윤;오유경
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.93-99
    • /
    • 2001
  • This study aims at finding out pertinent reaction conditions for treating high concentration ammonia contained in N-chemical factory wastewater with decompressed ammonia stripping method that was designed. And it also tries to investigate adsorption capability of removed ammonia to soil. The results from experiments are as follows ; 1. The removal rate of N $H_3$-N of synthetic wastewater was under 85% at pH 10 with decompressed ammonia stripping method. The reaction time in pressure 360 mmHg at pH 11 and 12 was shorter than in 460 mmHg, and the removal rate of N $H_3$-N with decompressed ammonia stripping method at 9$0^{\circ}C$ was 11~15% higher than air stripping 2. The optimum conditions for decompressed ammonia stripping with synthetic sample were shown as pH 12, temperature 9$0^{\circ}C$, internal reaction pressure 460 mmHg and reaction time 50 minutes. These conditions were applied to treat the wastewater containing organic-N 290.5mg/$\ell$, N $H_3$-N 168.9mg/$\ell$, N $O_2$-N 23.2mg/$\ell$, N $O_3$-N 252.4mg/$\ell$, T-N 735mg/$\ell$. Organic-N turned out to be removed 60%, the removal rate of N $H_3$-N IS 94%, T-N is 50%. But N $O_2$-N and N $O_3$-N were increased with 7.8% and 14.9% respectively. 3. The CO $D_{Sr}$ removal rate in decompressed ammonia stripping reaction was 42% and S $O_4$$^{2-}$ was removed 8.2%. It was turned out caused with higher pH and thermolysis. 4. In soil adsorption of ammonia desorbed from the decompressed stripping process of wastewater, the recovery rate was 76% in wet soil.

  • PDF

A Study on Water Quality Improvement of Hoeya Dam Reservoir Using Ecological Constructed Wetland (생태적 인공습지를 이용한 회야댐 수질개선에 관한 연구)

  • Lee, Sang-Hyeon;Cho, Yun-Chul
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.489-497
    • /
    • 2011
  • In this study the main purpose is to reduce non-point source pollution and improve water quality of Hoeya reservoir using constructed wetlands. As part of the efforts to improve water quality of the reservoir, cattail and reed-wetland cells were constructed in front of the reservoir to remove nitrogen(N) and phosphorus(P). Also, effects of hydraulic and seasonal variation on removal efficiencies of N and P were investigated. Total P and N removal efficiencies of the wetland system were approximately 20.7% and 42.7%, respectively. Removal efficiencies of N and P during the growth season (july to august) and blooming season of cattail and reed (september to october) were higher than other seasons. These results suggest that wetland system could be an effective alternative for control of non-point source pollutnat such as N and P of reservoir.

The Removal of Organics, Nitrogen and Phosphorus in Loop Reactor Using Fluidized Media (유동상 담체를 이용한 Loop Reactor에서 유기물 및 질소, 인 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.353-360
    • /
    • 2009
  • This study was accomplished using Anaerobic/Anoxic/Oxic upflow packed-bed column reactors with fixed media and Loop Reactor with fluidized media instead of Oxic reactor. The objectives of this study was to investigate the characteristics of organics, nitrogen and phosphorus removal from sewage with the HRT. The average removal efficiencies of $BOD_5$ and SS increase as increasing the hydraulic retention time (HRT) until 16 h of the HRT, and they were constant over 16 h of the HRT. The removal efficiency of $BOD_5$ in case of packed-bed reactor and Loop Reactor was about 86.6% and 90.9% respectively at 16 h of the HRT. The removal efficiency of SS in packed-bed reactor and Loop Reactor was about 78.0% and 88.2% respectively at 16 h of the HRT. The average removal efficiencies of $COD_{Cr}$ and $COD_{Mn}$ showed similar trends as those of $BOD_5$ and SS. At the HRT of 16 h, the removal efficiency of $COD_{Cr}$ in case of packed-bed reactor and Loop Reactor was 63.5%, 75.2% and that of $COD_{Mn}$ was 60.7%, 73.6% respectively. The average removal efficiencies of T-N and T-P increase as increasing the HRT. The removal efficiencies of T-N and T-P in Loop Reactor were 33.6% and 54.5% respectively at 16 h of the HRT and T-N and T-P were better removed in Loop Reactor. From this result, it was found that the performance of Loop Reactor was much higher than the performance of packed-bed reactor and the optimum HRT was 16 h.

Increased Microalgae Growth and Nutrient Removal Using Balanced N:P Ratio in Wastewater

  • Lee, Seung-Hoon;Ahn, Chi-Yong;Jo, Beom-Ho;Lee, Sang-Ah;Park, Ji-Yeon;An, Kwang-Guk;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Microalgal cultivation using wastewater is now regarded as essential for biodiesel production, as two goals can be achieved simultaneously; that is, nutrient removal efficiency and biomass production. Therefore, this study examined the effects of carbon sources, the N:P ratio, and the hydraulic retention time (HRT) to identify the optimal conditions for nutrient removal efficiency and biomass production. The effluent from a 2nd lagoon was used to cultivate microalgae. Whereas the algal species diversity and lipid content increased with a longer HRT, the algal biomass productivity decreased. Different carbon sources also affected the algal species composition. Diatoms were dominant with an increased pH when bicarbonate was supplied. However, 2% $CO_2$ gas led to a lower pH and the dominance of filamentous green algae with a much lower biomass productivity. Among the experiments, the highest chlorophyll-a concentration and lipid productivity were obtained with the addition of phosphate up to 0.5 mg/l P, since phosphorus was in short supply compared with nitrogen. The N and P removal efficiencies were also higher with a balanced N:P ratio, based on the addition of phosphate. Thus, optimizing the N:P ratio for the dominant algae could be critical in attaining higher algal growth, lipid productivity, and nutrient removal efficiency.

Review of 5-year Experimental Data from Treatment Wetland (인공습지 실험시설의 5년간 결과 및 고찰(지역환경 \circled3))

  • 김민희;윤춘경
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.649-654
    • /
    • 2000
  • Field experiment was performed from August 1996 to June 2000. The pilot plant was installed in Konkuk University and the effluent from septic tank of school building was used as an influent to the treatment basin. The treatment basin was composed of sand and reed. Average removal rate of BOD, SS was about 75.9%, 73.4%, respectively. T-P removal rate was about 47.3%, and T-N removal rate was 19.6%. The reason for poor T-N removal might be due to high influent concentration and short retention times. As operation period increased, BOD removal rates were increased, and SS and T-P removal rates did not change significantly, but T-N removal rates were decreased.

  • PDF

Influence of N-P-K Nutrient Levels on Ozone Susceptibility of Tomato Plants (N-P-K 양분 수준이 토마토의 오존 감수성에 미치는 영향)

  • Ahn, Joo-Won;Ku, Ja-Hyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.352-357
    • /
    • 1998
  • This experiment was conducted to find out the effects of major nutrient levels(N, P, K) on ozone susceptibility of tomato plants(Lycopersicon esculentum Mill, cv. Pink Glory). Plants were grown in water culture system. A half-strength of Hoagland's nutrient solution was considered as a standard formulation($N_{100}$ $P_{100}$ $K_{100}$). The levels of major nutrients were adjusted through addition or removal of several fertilizer salts from the standard solution. Top growth was significantly decreased at the low nitrogen level or phosphorus removal condition. P- and K-contents of leaves were greatly decreased by removal of salts containing P and K from the nutrient solution. The rate of ozone injury was significantly increased when potassium was removed. However, the influence of nitrogen and phosphorus levels or high potassium level on injury occurrence did not show statistical significance compared to the standard solution. Ozone exposure resulted in reduction of chlorophyll, and increase of ethylene production, electrolyte leakage and malondialdehyde(MDA) contents. These changes were much more enhanced in plants grown at the potassium removal solution. Whereas the activity of superoxide dismutase(SOD) was low at the potassium removal treatment and this tendency remained after ozone exposure. These results indicated that potassium nutrient level in tomato plants is closely associated with the susceptibility to ozone injury.

  • PDF

Sewage Treatment using Membrane Bioreactor(MBR) and Reverse Osmosis(RO) Process (Membrane bioreactor(MBR)과 Reverse osmosis(RO) 공정을 이용한 하수처리)

  • Oh, Seungwook;Jung, Jongtae;Lee, Jinwoo;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.21-28
    • /
    • 2007
  • The objective of this study was to investigate the effect of hydraulic retention time (HRT) on removal efficiencies of organic matter, nitrogen and phosphorus in MBR-RO process for treating synthetic sewage. In MBR process, turbidity was less than average 2 NTU and average removal efficiency showed more than 99% during the operation period(MBR 105 day). As a result of HRT variation, average removal efficiencies of $COD_{Cr}$ on HRT 6, 12, 18 and 24hour were about 72.4, 84, 88.6 and 92.5%, respectively. The $NH_4{^+}-N$ removal efficiency was about 60.2 85.5, 91.3 and 92.2%, respectively. T-N and T-P removal efficiencies increased from 53.7 and 56.8 to 82.5 and 86.4%, respectively as the HRT increased from 6 hour to 24 hour. In RO process, average removal efficiencies of color and $COD_{Cr}$ in RO permeate were about 99.9% and 96.8%, respectively. Also, removal efficiencies of T-N, $NH_4{^+}-N$, $NO_3{^-}-N$ and T-P were all above average 90%.

  • PDF

Aquatic Plants for Wastewater Treatment (수생식물을 이용한 수질정화에 관한 연구)

  • 나규환;권성환;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.49-55
    • /
    • 1996
  • Water parsley(Oenanthe javanica(Blume) DC) was raised with varying population density(S) in the laboratory aquarium unit to determine the growth equation. The population density was measure after 7 days. The resultant growth curve was well fit to the equation 1/S = A+B (1/S0) with a high correlation coefficient ($R^2$ = 0.999). The maximum specific absorption rate was $9.011 \times 10^{-5}$ kg $NO_x-N/kg$ water parsley$\cdot$day and $1.31 \times 10^{-5}$ kg $PO_4-P/kg$ water parsley$\cdot$day when the average population density was $2.62 kg/m^2$. The relationship between population density and nutrient absorption rate, the absorption rate of $NO_x-N$ was 5.04~5.24 mg/l$\cdot$day when the population density was $7.51~10.0 $mg/m^2\cdot day$ and the absorption rate of $PO_4-P$ was 0.56~0.78 mg/l$\cdot$day when the population density was 5.02~10.0 $kg/m^2\cdot day$. Taking into account the nutrient absorption rate and growth rate, the population density between $7.0 kg/m^2\cdot day$ and $8.0 kg/m^2 \cdot day$ was selected. The removal rate of nutrient was investigated after 7 days culture. Removal rate of $NO_x-N$ was 95.6~99.95% with initial concentration of 35 mg $NO_x-N/l$, and the removal rate of $PO_4-P$ was also high, indicating 80.24~98.9% with initial concentration of 5.95 mg $PO_x-P/l$.

  • PDF

Effect of Alanine on Cu/TaN Selectivity in Cu-CMP (Cu-CMP에서 Alanine이 Cu와 TaN의 선택비에 미치는 영향)

  • Park Jin-Hyung;Kim Min-Seok;Paik Ungyu;Park Jea-Gun
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.426-430
    • /
    • 2005
  • Chemical mechanical polishing (CMP) is an essential process in the production of integrated circuits containing copper interconnects. The effect of alanine in reactive slurries representative of those that might be used in copper CMP was studied with the aim of improving selectivity between copper(Cu) film and tantalum-nitride(TaN) film. We investigated the pH effect of nano-colloidal silica slurry containing alanine through the chemical mechanical polishing test for the 8(inch) blanket wafers as deposited Cu and TaN film, respectively. The copper and tantalum-nitride removal rate decreased with the increase of pH and reaches the neutral at pH 7, then, with the further increase of pH to alkaline, the removal rate rise to increase soddenly. It was found that alkaline slurry has a higher removal rate than acidic and neutral slurries for copper film, but the removal rate of tantalum-nitride does not change much. These tests indicated that alanine may improve the CMP process by controlling the selectivity between Cu and TaN film.

Study on Behavior of Organic, Nitrogen, and Phosphorus in the Sequencing Batch Reactor (연속회분식 반응기(Sequencing Batch Reactor)에서 유기물, 질소 및 인의 거동에 관한 연구)

  • 한기백;박동근
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.521-529
    • /
    • 1997
  • In the study, we Investigated the behavior and removal efficiency of organics, nitrogen. phosphorus with operating conditions in SBRs. Substrate used was synthetic wastewater in which the ratio of $COD_{cr}$. : N : P was 100 : 12 : 2. The cycling the in SBRs was adjusted at 6 hours and 8 hours, and then certainly Included anaerobic and aerobic conditions. Also, for each cycling time. we performed 2 series of experiment simultaneously which was set up 10 days and 20 days as SRT. The removal efficiency of $COD_{cr}$. was over 97% in all operating conditions. In the 6 hours cycling time, the removal efficiency of $PO_4^{3-}-P$ reached almost 100% in steady state. And then we could observe a typical phonemena of phosphorus release and uptake, and the removal efficiency of N was 67%, Residual N source was almost TKN and most of the rest remained as $NO_2-N$. Also the difference in both SRTs was not observed practically. In the 8 hours cycling time, dissolution of sludge appeared. and, $PO_4^{3-}-P was not nearly removed but nitrogen was removed up to 75%, And the residual nitrogen was accumulated as $NO_2^--N$.

  • PDF