• Title/Summary/Keyword: N/F

Search Result 5,794, Processing Time 0.03 seconds

CHARACTERIZATIONS BASED ON THE INDEPENDENCE OF THE EXPONENTIAL AND PARETO DISTRIBUTIONS BY RECORD VALUES

  • LEE MIN-YOUNG;CHANG SE-KYUNG
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.497-503
    • /
    • 2005
  • This paper presents characterizations on the independence of the exponential and Pareto distributions by record values. Let ${X_{n},\;n {\ge1}$ be a sequence of independent and identically distributed(i.i.d) random variables with a continuous cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). $Let{\;}Y_{n} = max{X_1, X_2, \ldots, X_n}$ for n \ge 1. We say $X_{j}$ is an upper record value of ${X_{n},{\;}n\ge 1}, if Y_{j} > Y_{j-1}, j > 1$. The indices at which the upper record values occur are given by the record times {u(n)}, n \ge 1, where u(n) = $min{j|j > u(n-1), X_{j} > X_{u(n-1)}, n \ge 2}$ and u(l) = 1. Then F(x) = $1 - e^{-\frac{x}{a}}$, x > 0, ${\sigma} > 0$ if and only if $\frac {X_u(_n)}{X_u(_{n+1})} and X_u(_{n+1}), n \ge 1$, are independent. Also F(x) = $1 - x^{-\theta}, x > 1, {\theta} > 0$ if and only if $\frac {X_u(_{n+1})}{X_u(_n)}{\;}and{\;} X_{u(n)},{\;} n {\ge} 1$, are independent.

Effects of Pluronic F-68 and Oxygen Vectors on the Cell Growth of Angelica gigas Nakai in Aqueous Two-Phase System (수성이상계에서 Pluronic F-68과 산소전달물질이 참당귀 현탁세포 증식에 미치는 영향)

  • Cheon, Su-Hwan;Lee, Kyoung-Hoon;Kwon, Jun-Young;Ryu, Hyun-Nam;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.207-212
    • /
    • 2007
  • Pluronic F-68 and oxygen vectors were applied to increase the cell growth of Angelica gigas Nakai in aqueous two-phase system (ATPS). ATPS was composed of 3.6% (w/v) polyethylene glycol (PEG) 20,000 and 2.8% (w/v) crude dextran. n-Hexadecane, n-dodecane and FC-40 were used as oxygen vectors to enhance the oxygen transfer in ATPS. With 2$\sim$10 g/L of Pluronic F-68, addition of of n-hexadecane and FC-40 significantly enhanced the oxygen transfer rate as well as the maximum cell mass in a medium with ATPS. However, n-dodecane reduced the cell growth in all treatments. Maximum cell densities were increased up to 27.5% with 10 g/L of Pluronic F-68 and up to 40.2% with 8% (v/v) n-hexadecane compared to those of the controls without Pluronic F-68 and oxygen vectors. It was confirmed that the cell growth could be increased in ATPS using n-hexadecane.

NONWANDERING SETS OF THE POWERS ON THE CIRCLE

  • Cho, Seong Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.107-113
    • /
    • 1996
  • For continuous maps f of the circle to itself, we show that (1) the set of ${\omega}$-limit points is contained in the set of nonwandering points of $f^n$ for all $n{\geq}1$. (2) if the set of turning points of f is finite, then the set of accumulation points of non wandering set is contained in the set of non wandering points of $f^n$ for all $n{\geq}1$.

  • PDF

THE ZEROS DISTRIBUTION OF SOLUTIONS OF HIGHER ORDER DIFFERENTIAL EQUATIONS IN AN ANGULAR DOMAIN

  • Huang, Zhibo;Chen, Zongxuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.443-454
    • /
    • 2010
  • In this paper, we investigate the zeros distribution and Borel direction for the solutions of linear homogeneous differential equation $f^{(n)}+A_{n-2}(z)f^{(n-2)}+{\cdots}+A_1(z)f'+A_0(z)f=0(n{\geq}2)$ in an angular domain. Especially, we establish a relation between a cluster ray of zeros and Borel direction.

ON THE BEREZIN TRANSFORM ON $D^n$

  • Lee, Jae-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.311-324
    • /
    • 1997
  • We show that if $f \in L^{\infty}(D^n)$ satisfies Sf = rf for some r in the unit circle, where S is any convex combination of the iterations of Berezin operator, then f is n-harmonic. And we give some remarks and a conjecture on the space $M_2={f \in L^2(D^2, m \times m)\midBf = f$.

  • PDF

ON THE GALOIS GROUP OF ITERATE POLYNOMIALS

  • Choi, Eun-Mi
    • The Pure and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.283-296
    • /
    • 2009
  • Let f(x) = $x^n\;+\;a$ be a binomial polynomial in Z[x] and $f_m(x)$ be the m-th iterate of f(x). In this work we study a necessary condition to be the Galois group of $f_m(x)$ is isomorphic to a wreath product group $[C_n]^m$ where $C_n$ is a cyclic group of order n.

  • PDF

Development and Luminescent Characteristics of $CaSiN_2$ Based Phosphors ($CaSiN_2$를 모체로 하는 형광체의 개발 및 발광 특성)

  • Lee, Soon-Seok;Lim, Sung-Kyoo
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.10
    • /
    • pp.31-36
    • /
    • 1999
  • The $CaSiN_2:Eu$ and $CaSiN_2:Tb$ phosphors were synthesized and analyzed to develop new nitride compound phosphors. $Ca_3N_2$, $Si_3N_4$ and $EuF_3$(or $TbF_3$) powders were mixed, cold-pressed, and sintered to synthesize $CaSiN_2:Eu$ and $CaSiN_2:Tb$ phosphors. Photoluminescence(PL) and electroluminescence(EL) characteristics of the synthesized phosphors were measured and found to be similar to general emission spectra of 뗘 and Tb ion, respecticely. Threshold voltage($V_{th)$) and luminance of the $CaSiN_2:Eu$ TFEL device fabricated by sputtering were 90 V and 1.62 $cd/m^2$ at 280 V, respectively. The charge-voltage(Q-V) and transferred charge-phosphor field($Q_t-F_p$) characteristics of the TFEL devices were also measured.

  • PDF

A Study on the Daily Probability of Rainfall in the Taegu Area according to the Theory of Probaility (대구지방(大邱地方)의 확률일우량(確率日雨量)에 관(關)한 연구(硏究))

  • Kim, Young Ki;Na, In Yup
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.225-234
    • /
    • 1971
  • With the advance of civilization and steadily increasing population rivalry and competition for the use of the sewage, culverts, farm irrigation and control of various types of flood discharge have developed and will be come more and more keen in the future. The author has tried to calculated a formula that could adjust these conflicts and bring about proper solutions for many problems arising in connection with these conditions. The purpose of this study is to find out effective sewage, culvert, drainage, farm irrigation, flood discharge and other engineering needs in the Taegu area. If demands expand further a new formula will have to be calculated. For the above the author estimated methods of control for the probable expected rainfall using a formula based on data collected over a long period of time. The formula is determined on the basis of the maximum daily rainfall data from 1921 to 1971 in the Taegu area. 1. Iwai methods shows a highly significant correlation among the variations of Hazen, Thomas, Gumbel methods and logarithmic normal distribution. 2. This study obtained the following major formula: ${\log}(x-2.6)=0.241{\xi}+1.92049{\cdots}{\cdots}$(I.M) by using the relation $F(x)=\frac{1}{\sqrt{\pi}}{\int}_{-{\infty}}^{\xi}e^{-{\xi}^2}d{\xi}$. ${\xi}=a{\log}_{10}\(\frac{x+b}{x_0+b}\)$ ($-b<x<{\infty}$) ${\log}(x_0+b)=2.0448$ $\frac{1}{a}=\sqrt{\frac{2N}{N-1}}S_x=0.1954$. $b=\frac{1}{m}\sum\limits_{i=1}^{m}b_s=-2.6$ $S_x=\sqrt{\frac{1}{N}\sum\limits^N_{i=1}\{{\log}(x_i+b)\}^2-\{{\log}(x_0+b)\}^2}=0.169$ This formule may be advantageously applicable to the estimation of flood discharge, sewage, culverts and drainage in the Taegu area. Notation for general terms has been denoted by the following. Other notations for general terms was used as needed. $W_{(x)}$ : probability of occurranec, $W_{(x)}=\int_{x}^{\infty}f_{(n)}dx$ $S_{(x)}$ : probability of noneoccurrance. $S_{(x)}=\int_{-\infty}^{x}f_(x)dx=1-W_{(x)}$ T : Return period $T=\frac{1}{nW_{(x)}}$ or $T=\frac{1}{nS_{(x)}}$ $W_n$ : Hazen plot $W_n=\frac{2n-1}{2N}$ $F_n=1-W_x=1-\(\frac{2n-1}{2N}\)$ n : Number of observation (annual maximum series) P : Probability $P=\frac{N!}{{t!}(N-t)}F{_i}^{N-t}(1-F_i)^t$ $F_n$ : Thomas plot $F_n=\(1-\frac{n}{N+1}\)$ N : Total number of sample size $X_l$ : $X_s$ : maximum, minumum value of total number of sample size.

  • PDF