Effects of Pluronic F-68 and Oxygen Vectors on the Cell Growth of Angelica gigas Nakai in Aqueous Two-Phase System

수성이상계에서 Pluronic F-68과 산소전달물질이 참당귀 현탁세포 증식에 미치는 영향

  • Cheon, Su-Hwan (Department of Biological Engineering, Inha University) ;
  • Lee, Kyoung-Hoon (Department of Biological Engineering, Inha University) ;
  • Kwon, Jun-Young (Department of Biological Engineering, Inha University) ;
  • Ryu, Hyun-Nam (Department of Biological Engineering, Inha University) ;
  • Kim, Dong-Il (Department of Biological Engineering, Inha University)
  • 전수환 (인하대학교 공과대학 생물공학과) ;
  • 이경훈 (인하대학교 공과대학 생물공학과) ;
  • 권준영 (인하대학교 공과대학 생물공학과) ;
  • 류현남 (인하대학교 공과대학 생물공학과) ;
  • 김동일 (인하대학교 공과대학 생물공학과)
  • Published : 2007.08.30

Abstract

Pluronic F-68 and oxygen vectors were applied to increase the cell growth of Angelica gigas Nakai in aqueous two-phase system (ATPS). ATPS was composed of 3.6% (w/v) polyethylene glycol (PEG) 20,000 and 2.8% (w/v) crude dextran. n-Hexadecane, n-dodecane and FC-40 were used as oxygen vectors to enhance the oxygen transfer in ATPS. With 2$\sim$10 g/L of Pluronic F-68, addition of of n-hexadecane and FC-40 significantly enhanced the oxygen transfer rate as well as the maximum cell mass in a medium with ATPS. However, n-dodecane reduced the cell growth in all treatments. Maximum cell densities were increased up to 27.5% with 10 g/L of Pluronic F-68 and up to 40.2% with 8% (v/v) n-hexadecane compared to those of the controls without Pluronic F-68 and oxygen vectors. It was confirmed that the cell growth could be increased in ATPS using n-hexadecane.

본 연구에서는 수성이상계에서 Pluronic F-68과 산소전달물질을 적용하여, 물질전달과 산소전달을 증가시켜 당귀세포의 증식을 향상시켰다. 특히 산소전달물질인 n-hexadecane이 Pluronic F-68보다 수성이상계에서의 당귀 세포증식에 더 긍정적임을 확인하였다. 따라서 Pluronic F-68과 적절한 산소 전달물질의 첨가는 수성이상계 뿐만 아니라 대량배양을 위한 고농도배양 등에 효과적으로 적용가능하리라 사료된다.

Keywords

References

  1. Ham, M. S., S. S. Kim, J. S. Hong, J. H. Lee, E. K. Chung, Y. S. Park, and H. Y. Lee (1996), Screening and comparison of active substances of Angelica gigas Nakai produced in Kangwon and Angelica ocutiloba Kitagawa produced in Japan, Kor. J. Appl. Microbiol. Btotechnol. 24, 624-629
  2. Ahn, K. S. (1996), A Study on the Anticancer and immuno-stimulating agent from the root of Angelica gigas Nakai, Ph.D. Dissertation, Dept. of Biology, Korea University, Seoul
  3. Rye, K. S., N. D. Hong, N. J. Kim, and Y. Y. Kong (1990), Studies on the coumarin constituents of the root of Angelica gigas Nakai, Kor. J. Pharmacogn. 21
  4. Hellwig, S., J. Drossardk, R. M. Twyman, and R. Fisher (2004), Plant cell cultures for the production of recombinant proteins, Nat. Biotechnol. 22, 1415-1422 https://doi.org/10.1038/nbt1027
  5. Ma, J. K. C., P. W. M. Drake, and P. Christou (2003), The production of recombinant pharmaceutical protein in plants, Nat. Rev. 4, 794-805 https://doi.org/10.1038/nrg1177
  6. Schugerl, K. and J. Hubbuch (2005), Integrated bioprocesses, Curr. Opin. Microbiol. 8, 294-300 https://doi.org/10.1016/j.mib.2005.01.002
  7. Palomare, M. R. (2004), Practical application of aqueous two-phase partition to process development for the recovery of biological products, J. Chromatogr. A 807, 3-11 https://doi.org/10.1016/S0021-9673(98)00230-1
  8. Hooker, R. S. and J. M. Lee (1990), Cultivation of plant cella in aqueous two-phase polymer system, Plant Cell Rep. 8, 546-549 https://doi.org/10.1007/BF00820206
  9. Jia, S., P. Li, Y. S. Park, and M. Okabe (1996), Enhanced oxygen transfer in tower bioreactor on addition of liquid hydrocarbons, J. Ferment. Bioeng. 82, 191-193 https://doi.org/10.1016/0922-338X(96)85049-5
  10. Platis, D. and N. E. Labrou (2006), Development of an aqueous two-phase partitioning system for fractionating therapeutic proteins from tobacco extract, J. Chromatogr. A. 1128, 114-124 https://doi.org/10.1016/j.chroma.2006.06.047
  11. Palomares, L. A., Gonzalez M., and O. T. Ramirez (2000), Evidence of Plutonic F-6S direct interaction with insect cells: impact on shear protection, recombinant protein, and baculovirus production, Enzyme Microb. Technol. 26, 324-331 https://doi.org/10.1016/S0141-0229(99)00176-3
  12. Anthony, P., M. R. Davey, J. B. Power, C. Washington, and K. C. Lowe (1994), Synergistic enhancement of protoplast growth by oxygenated perfluorocarbon and Pluronic F-68, Plant Cell Rep. 13, 251-255
  13. Murhammer, D. W. and C. F Goochee (1988), Scaleup of insect cell culture: protective effects of Plutonic F-68, Bio/Technology 6, 1411-1418 https://doi.org/10.1038/nbt1288-1411
  14. Anthony, P., N. B. Jelodar, K. C. Lowe, J. B. Power, and M. R. Davey (1996), Pluronic F-68 increases the post-thaw growth of cryopreserved plant cells, Cryobiology 33, 508-514 https://doi.org/10.1006/cryo.1996.0054
  15. Bassetti, L., M. Hagendoorn, and J. Tramper (1995), Surfactant-induced non-lethal release of anthraquinones from suspension cultures of Morinda citrifolia, J. Microbiol. 39, 149-155
  16. Elibol, M. (1999), Mass transfer characteristics of yeast fermentation broth in the presence of Pluronic F-68, Process Biochem. 34, 557-561 https://doi.org/10.1016/S0032-9592(98)00126-5
  17. Lai, L. S. T., T. H. Tsai, and T. C. Wang (2002), Application of oxygen vectors to Aspergillus terreus cultivation, J. Biosci. Bioeng. 94, 453-459 https://doi.org/10.1016/S1389-1723(02)80224-9
  18. Jia, S., Wang M., P. Kahar, Y. S. Park, and M. Okabe (1997), Enhancement of yeast fermentation by addition of oxygen vectors in air-lift bioreactor, J. Ferment. Bioeng. 84, 176-178 https://doi.org/10.1016/S0922-338X(97)82552-4
  19. Ju, L. K. (1991), Enhancing oxygen transfer in bioreactors by perfluorocarbon emulsions, Biotechnol. Prog. 7, 323-329 https://doi.org/10.1021/bp00010a006
  20. Drouin, C. M. and D. G. Cooper (1992), Biosurfactants and aqueous two-phase fermentation, Biotechnol. Bioeng. 40, 86-90 https://doi.org/10.1002/bit.260400113
  21. Ro, C. S., L. K. Ju, and R. F. Baddour (1990), Enhancing penicillin fermentations by increased oxygen solubility through the addition of n-hexadecane, Biotechnol. Bioeng. 36, 1110-1118 https://doi.org/10.1002/bit.260361106
  22. Murhammer, D. W. and C. F. Goochee (1990), Structural features of nonionic polyglycol polymer molecules responsible for the protective effect in sparged animal cell bioreactor, Biotechnol. Prog. 6, 142-148 https://doi.org/10.1021/bp00002a008
  23. Jewitt, N. J., K. C. Lowe, and D. I. de Pomerai (1999), Oxygenated perfluorocarbon promotes nematode growth and stress-sensitivity in a two-phase liquid culture system, Enzyme Microb. Technol. 25, 349-356 https://doi.org/10.1016/S0141-0229(99)00052-6
  24. Bassetti, L. and J. Tramper (1995), Increased anthraquinone production by Morinda citrifolia in a two-phase system with Pluronic F-68, Enzyme Microb. Technol. 17, 353-358 https://doi.org/10.1016/0141-0229(94)00059-X
  25. Giridhar, R. and A. K. Srivastava (2000), Productivity enhancement in L-sorbose fermentation using oxygen vector, Enzyme Microb. Technol. 27, 537-541 https://doi.org/10.1016/S0141-0229(00)00252-0
  26. Jia, S., P. Li, Y. S. Park, and M. Okabe (1996), Enhanced oxygen transfer in tower bioreactor on addition of liquid hydrocarbons, J. Ferment. Bioeng. 82, 191-193 https://doi.org/10.1016/0922-338X(96)85049-5