• Title/Summary/Keyword: N, N-dimethylacetamide

Search Result 51, Processing Time 0.022 seconds

Preparation, Characterization, and Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Dense P84-Polyimide Film

  • Park, Ho-Bum;Nam, Sang-Yong;Jang, Jeong-Gyu;Lee, Young-Moo
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.25-35
    • /
    • 2002
  • The gas permeation properties have been studied on carbon molecular sieve (CMS) membranes prepared by pyrolysis of P84 polyimide under various conditions. P84 polyimide shows high permselectivities (O$_2$/N$_2$= 9.17 and CO$_2$/N$_2$= 35) for various gas pairs and has a good processibility because it is easily soluble in high polar solvents such as N-methylpyrrolidinone (NMP), dimethylformamide (DMF), and N,N-dimethylacetamide (DMAc). After pyrolysis under Ar flow, the change in the heating rate was found to affect the gas permeation properties to some extent. The permeabilities of the selected gases were shown to be in the order He > CO$_2$> O$_2$> N$_2$for all the CMS membranes, whose order was in accordance with the order of kinetic gas diameters. It also revealed that the pyrolysis temperature considerably influenced the gas permeation properties of the CMS membranes derived from P84 polyimide. The CMS membranes pyrolized at 700$\^{C}$ temperature exhibited the highest permeability with relatively targe loss in permselectivity. This means that the pyrolysis temperature should be varied in accordance with target gases to be separated.

Novel Sulfonated Poly(arylene ether ketone) Containing Benzoxazole Membranes for Proton Exchange Membrane Fuel Cell

  • Li Jin-Huan;Lee Chang-Hyun;Park Ho-Bum;Lee Young-Moo
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.438-442
    • /
    • 2006
  • Novel sulfonated poly(aryl ether ketones) containing benzoxazole were directly synthesized by aromatic nucleophilic polycondensation using various ratios of 2,2'-bi[2-( 4-flurophenyl)benzoxazol-6-yl]hexafluoropropane to sodium 5,5'-carbonylbis(2-fluorobenzenesulfonate). The copolymers were soluble in polar aprotic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide at a relatively high solid composition (>15 wt%) and formed tough, flexible and transparent membranes. The membranes exhibited a degradation temperature of above $290^{\circ}C$. The exact dissolution times of these membranes at $80^{\circ}C$ in Fenton's reagent (3 wt% $H_2O_2$ containing 2 ppm $FeSO_4$) were undetectable, confirming their excellent chemical stability in fuel cell application. The membranes showed a moderate increase in water uptake with respect to increasing temperature. The proton conductivities of the membranes were dependent on the composition and ranged from $1.10{\times}10^{-2}$ to $5.50{\times}10^{-2}Scm^{-1}$ at $80^{\circ}C$ and 95% relative humidity (RH). At $120^{\circ}C$ without externally humidified conditions, the conductivities increased above $10^{-2}Scm^{-1}$ with respect to increasing benzoxazole content, which suggested that the benzoxazole moieties contributed to the proton conduction.

Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes (용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가)

  • Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.420-426
    • /
    • 2017
  • Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was $6500L/m^2h$ (water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.

A Study on the Photoisomerization of LB Films of Polyimide (폴리이미드 LB막의 광이성화 현상에 관한 연구)

  • Park, Keun-Ho;Byon, Yong-Jin;Song, Kyung-Ho;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1882-1884
    • /
    • 1999
  • The photoisomerization of functional polyimide was investigated in the various temperatures and UV(360nm) & visible(450nm) light irradiation. The absorption spectrum of azobenzene containing polyamic acid in a mixture of N,N-dimethylacetamide and benzene(1:1 by volume) solution was induced photoisomerization by UV and visible light irradiation. The absorption spectrum of LB films are also induced photoisomerization by UV and visible light irradiation.

  • PDF

Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane

  • Ariono, Danu;Aryanti, Putu T.P.;Wardani, Anita K.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.353-361
    • /
    • 2018
  • Fouling characteristics of humic substances on tight ultrafiltration (UF) membrane have been investigated. The tight UF membrane was prepared by blending polysulfone (PSf) in N.N-dimethylacetamide (DMAc) with 25%wt of Polyethylene glycol (PEG400) and 4%wt of acetone. Fouling characteristic of the modified PSf membrane was observed during peat water filtration in different trans-membrane pressure (TMP). It was found that the acetone modified membrane provided 13% increase in TMP during five hours of peat water filtration, where a stable flux was reached within 150 minutes. Meanwhile, the increase of TMP from 10 psig to 30 psig resulted in a fouling resistance enhancement of 60%. Furthermore, based on the fouling analysis, fouling mechanism at the first phase of filtration was attributed to intermediate blocking while the second phase was cake formation.

m-Aramid Films in Diverse Coagulants

  • Kim, Ji-Young;Jung, Ji-Won;Kim, Sam-Soo;Lee, Jae-Woong
    • Textile Coloration and Finishing
    • /
    • v.21 no.4
    • /
    • pp.63-67
    • /
    • 2009
  • m-Aramid dissolved in N,N-dimethylacetamide (DMAc), were coagulated in different coagulants such as water, methanol, ethanol, propanol and butanol. Various concentrations and temperatures of the coagulants were also used to evaluate dyeing properties of coagulated m-aramid films. Field emission scanning electron microscopy (FE-SEM) was employed to investigate the surface morphology of m-aramid films. Wide angle X-ray diffraction (WAXD) was conducted in order to measure crystallinity change of mcaramid fibers and films. WAXD patterns showed that crystallinity of m-aramid fibers was reduced after film formation. In addition, color depth (K/S value) was measured and the results revealed that the film coagulated in water possessed fairly enhanced color depth.

A Study on the Photoisomerization of Functional Polyimide Monolayers (기능성 폴리이미드 단분자막의 광이성화 현상에 관한 연구)

  • 박근호;강동완;김성일;박태곤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.475-478
    • /
    • 2000
  • Maxwell displacement current(MDC) was generated when the area per molecule was about 140${\AA}$$^2$and 100${\AA}$$^2$. MDC were investigated in connection with monolayer compression cycles. It was found that the maximum of MDC appeared at the molecular area just before the initial rise of surface pressure in compression cycles. The absorption spectra of polyamic acid containing p-methoxyazobenzene in a mixture of N,N-dimethylacetamide(DMAc) and benzene(1:1 by volume) solution was induced photoisomerization by UV and visible light irradiation. The precursor LB film was heated in a vacuum dry oven at 120$^{\circ}C$ in order to convert it into the LB film of polyimide. The absorption spectra of LB films were also induced photoisomerization by UV and visible light irradiation.

  • PDF

A Study on the Properties of Langmuir-Blodgett Films of Polyamic Acid containing p-Methoxyazobenzene (p-Methoxyazobenzene을 함유한 Polyamic acid의 Langmuir-Blodgett막 물성에 관한 연구)

  • Park, Keun-Ho;Lee, Seong-Rak
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.55-62
    • /
    • 1998
  • The absorption spectra of polyamic acid containing p-methoxyazobenzene in a mixture of N, N-dimethylacetamide(DMAC) and benzene(1:1 by volume) solution was induced photoisomerization by UV and visible light irradiation. This solution is influenced on temperature according to measure by UV-Vis Spectrophotometer. Ultra thin film of polyamic acid containing p-methoxyazobenzene was prepared on the hydrophilic quartz plate by Langmuir-Blodgett(LB) method. The precursor LB film was heated in a vacuum dry oven at $120^{\circ}C$ in order to convert it into the LB film of polyimide. The absorption spectra of LB films were also induced photoisomerization by UV and visible light irradiation.

Highly Sensitive Multichannel Interdigitated Capacitor Based Bitterness Sensor

  • Khan, Md. Rajibur Rahaman;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.69-75
    • /
    • 2018
  • In this study, we propose a multichannel interdigitated capacitor (IDC) sensor for detecting the bitterness of coffee. The operating principle of the device is based on the variation in capacitance of a sensing membrane in contact with a bitter solution. Four solvatochromic dyes, namely, Nile red, Reichardt's dye, auramine-O, and rhodamine-B, were mixed with polyvinylchloride (PVC) and N,N-dimethylacetamide (DMAC), to create four different types of bitter-sensitive solutions. These solutions were then individually inserted into four interdigitated electrodes (IDEs) using a spin coater, to prepare four distinct IDC sensors. The sensors are capable of detecting bitterness-inducing chemical compounds in any solution, at concentrations of approximately $1{\mu}M$ to 1 M. The sensitivity of the IDC bitterness sensor containing the Reichardt's dye sensing-membrane was approximately 1.58 nF/decade. The multichannel sensor has a response time of approximately 6 s, and an approximate recovery time of 5 s. The proposed sensor offers a stable sensing response and linear sensing performance over a wide measurement range, with a correlation coefficient ($R^2$) of approximately 0.972.

Synthesis and Optical Properties of Poly(2-ethynylpyridinum bromide) Having Glycidyl Functionality

  • Gal, Yeong-Soon;Lee, Won-Chul;Lee, Sang-Seob;Bae, Jang-Soon;Kim, Bong-Shik;Jang, Sang-Hee;Jin, Sung-Ho;Park, Jong-Wook
    • Macromolecular Research
    • /
    • v.8 no.3
    • /
    • pp.131-136
    • /
    • 2000
  • The synthesis of poly(2-ethynylpyridine) having glycidyl functionality was performed by the direct polymerization of 2-ethynylpyridine and epibromohydrin under mild reaction conditions without any initiator and catalysts. The polymerization proceeded well to give the resulting poly(2-ethynylpyridinium bromide) with a glycidyl functionality having relativity high molecular weight in high yields. The polymer structure was characterized by various instrumental methods to have the conjugated polymer backbone structure having glycidyl functionality. This ionic polymer was completely soluble in water, methanol, DMF, DMSO, and N,N-dimethylacetamide, but insoluble in THF, toluene, acetone, nitrobenzene, and n-hexane. This polymer system exhibited the UV-visible absorption around 300 and 520 nm and red photoluminescence spectrum around 725 nm.

  • PDF