Preparation, Characterization, and Gas Permeation Properties of Carbon Molecular Sieve Membranes Derived from Dense P84-Polyimide Film

  • Park, Ho-Bum (National Research Laboratory for Membrane, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Nam, Sang-Yong (Department of Polymer Science and Engineering, College of Engineering, Gyeongsang National University) ;
  • Jang, Jeong-Gyu (National Research Laboratory for Membrane, School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Young-Moo (National Research Laboratory for Membrane, School of Chemical Engineering, College of Engineering, Hanyang University)
  • Published : 2002.12.01

Abstract

The gas permeation properties have been studied on carbon molecular sieve (CMS) membranes prepared by pyrolysis of P84 polyimide under various conditions. P84 polyimide shows high permselectivities (O$_2$/N$_2$= 9.17 and CO$_2$/N$_2$= 35) for various gas pairs and has a good processibility because it is easily soluble in high polar solvents such as N-methylpyrrolidinone (NMP), dimethylformamide (DMF), and N,N-dimethylacetamide (DMAc). After pyrolysis under Ar flow, the change in the heating rate was found to affect the gas permeation properties to some extent. The permeabilities of the selected gases were shown to be in the order He > CO$_2$> O$_2$> N$_2$for all the CMS membranes, whose order was in accordance with the order of kinetic gas diameters. It also revealed that the pyrolysis temperature considerably influenced the gas permeation properties of the CMS membranes derived from P84 polyimide. The CMS membranes pyrolized at 700$\^{C}$ temperature exhibited the highest permeability with relatively targe loss in permselectivity. This means that the pyrolysis temperature should be varied in accordance with target gases to be separated.

Keywords

References

  1. M. G. Sedigh, W. J. Onstot, L. Xu, W. L. Peng, T. T. Tsotsis, and M. Sahimi, J Phys. Chern A, 102, 8580 (1998)
  2. Rao, M. B.; Sircar, S.; Golden, C. US Patent no. 5104425, 14 April 1992
  3. T. A. Centeno and A. B. Fuertes, J Membr. Sci., 160, 201 (1994)
  4. M. G. Sedigh, L. Xu, T. T. Tsotsis, and M. Sahimi, Ind Eng. Chem Res., 38, 3367 (1999)
  5. J. Hayashi, M. Yamamoto, K. Kusakabe, and S. Moraoka, Ind. Eng. Chem. Res., 36, 2134 (1997)
  6. J. Hayashi, M. Yamamoto, K. Kusakabe, and S.Morooka, J Membr. Sci, 124, 243 (1997)
  7. J. Petersen, M. Matsuda, and K. Haraya, J Membr. Sci., 131, 85 (1997)
  8. C. W. Jones and W. J. Koros, Carbon, 32, 1419 (1994)
  9. A. B. Fuertes, D. M. Nevskaia, and T. A. Centeno, Microporous and Mesoporous Mater., 33, 115 (1999)
  10. K. Wang, H. Suda, and K. Haraya, Ind. Eng. Chem. Res., 40, 2942 (2001)
  11. H. B. Park, I. Y. Suh, and Y. M. Lee, Chem. Mater., 14, 3034 (2002)
  12. H. B. Park and Y. M. Lee, Membrane J., 12(2), 107 (2002)
  13. H. B. Park and Y. M. Lee, J. Membr., Sci. 2002, in press
  14. J. W. Patrick (Ed.), Porosity in Carbons: Characterization and Applications, Edward Arnold, London (1995)
  15. H. Suda and K. Haraya, J. Phy. Chem. B, 101, 3988 (1997)
  16. C. W. Jones and W. J. Koros, Carbon, 32, 1427 (1994)
  17. C. W. Jones and W. J. Koros, Ind Eng. Chem Res., 34, 158 (1995)
  18. .V. C. Geiszler and W. J. Jones, Ind. Eng. Chem Res., 35, 2999 (1996)
  19. H. C. Foley, Microporous Mater., 4, 407 (1995)
  20. W. Shusen, Z. Meiyun, and W. Zhizhong, J. Membr. Sci., 109, 267 (1996)
  21. A. B. Fuertes and T. A. Centeno, Microporous and Mesoporous Mater., 26, 23 (1998)