• Title/Summary/Keyword: Myristicin

Search Result 25, Processing Time 0.026 seconds

Metabolism and Disposition of Myristicin in the Isolated Perfused Rat Liver

  • Jeong, Chang Kyun;Kim, Kyun;Lee, Hye Suk
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.180-184
    • /
    • 2001
  • To investigate the hepatic metabolism of myristicin isolated rat livers were perfused under single-pass conditions with perfusate containing myristicin. In outflow perfusate and bile, 5-allyl-1-methoxy-2,3-dihydroxybenzene (M1), M1-sulfate, and M1-glucuronide conjugates were identified as the metabolites of myristicin. HPLC method with UV detection was applied to investigate the hepatic disposition of the compounds. The concentration of myristicin, M1, and M1-conjugates in the outflow perfusate reached steady-state levels within 20 min after commencing the perfusion of $4.5{\mu}M$ myristicin. At steady-state, the mean (${\pm}S.D.$) extraction ratio of myristicin was $0.49({\pm}0.16)$ and clearance was $13.7({\pm}4.5)ml/min$. M1 accounted for $44.0{\pm}5.3%$ of eliminated myristicin and was recovered as unchanged M1, M1-sulfate, and M1-glucuronide in the bile and outflow perfusate.

  • PDF

Isolation and Quantitative Determination Method Validation of myristicin from Myristica fragrans Houttuyn (육두구(Myristica fragrans Houttuyn) 내의 myristicin의 분리 및 HPLC를 이용한 함량분석 방법 밸리데이션)

  • Kim, Soo-Hwan;Lee, Dong-Ho;Kwon, Soo-Han;Lim, Buyng-Ho;Lee, Sang-Hun;Min, Bum-Chan
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.1
    • /
    • pp.19-21
    • /
    • 2007
  • Myristica fragrans has been used for the treatment of stomachache in East Asia. It is very important to determine the amount of myristicin in Myristica fragrans, because excess myristicin causes side effects. In this study, we developed and validated the method for determination contents of myristicin in Myristica fragrans which was purchased from various regions of Korea. The average content of myristicin in Myristica fragrans was 2.10% with the validated HPLC analysis method.

GATA-3 is a Key Factor for Th1/Th2 Balance Regulation by Myristicin in a Murine Model of Asthma (Myristicin이 Ovalbumin으로 유도한 천식 생쥐모델에서 Th1/Th2 Balance를 조절하는 GATA-3에 미치는 효과)

  • Lee, Kyu;Lee, Chang-Min;Jung, In-Duk;Jeong, Young-Il;Chun, Sung-Hak;Park, Hee-Ju;Choi, Il-Whan;Ahn, Soon-Cheol;Shin, Yong-Kyoo;Lee, Sang-Yull;Yeom, Seok-Ran;Kim, Jong-Suk;Park, Yeong-Min
    • Journal of Life Science
    • /
    • v.17 no.8 s.88
    • /
    • pp.1090-1099
    • /
    • 2007
  • Myristicin, l-allyl-3,4-methylenedioxy-5-methoxybenzene, was one of the major essential oils of nutmeg. However, its anti-allergic effect in the Th1/Th2 immune response was poorly understood. Recently, it was shown that T-bet and GATA-3 was master Th1 and Th2 regulatory transcription factors. In this study, we have attempted to determine whether myristicin regulates Th1/Th2 cytokine production, T-bet and GATA-3 gene expression in ovalbumin (OVA)-induced asthma model mice. Myristicin reduced levels of IL-4, Th2 cytokine production in OVA-sensitized and challenged mice. In the other side, it increased $IFN-{\gamma}$, Th1 cytokine production in myristicin administrated mice. We also examined to ascertain whether myristicin could influence eosinophil peroxidase (EPO) activity. After being sensitized and challenged with ovalbumin (OVA) showed typical asthmatic reactions. These reactions included an increase in the number of eosinophils in bronchoalveolar lavage fluid, an increase in inflammatory cell infiltration into the lung tissue around blood vessels and airways, and the development of airway hyper-responsiveness (AHR). The administration of myristicin before the last airway OVA challenge resulted in a significant inhibition of all asthmatic reactions. Accordingly, these findings provide new insight into the immunopharmacological role of myristicin in terms of its effects in a murine model of asthma.

Effects of Caffeic Acid, Myristicin and Rosemarinic Acid on the Gene Expression and Production of Airway MUC5AC Mucin

  • Lee, Hyun Jae;Lee, Kang Ro;Hong, Jang-Hee;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.22 no.4
    • /
    • pp.275-281
    • /
    • 2016
  • Perilla frutescens was empirically used for controlling airway inflammatory diseases in folk medicine. We investigated whether caffeic acid, myristicin and rosemarinic acid derived from Perilla frutescens significantly affect the gene expression and production of mucin from airway epithelial cells. Confluent NCI-H292 cells were pretreated with caffeic acid, myristicin or rosemarinic acid for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 h. The MUC5AC mucin gene expression and production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Additionally, we examined whether caffeic acid, myristicin or rosemarinic acid affects MUC5AC mucin production indued by epidermal growth factor (EGF) and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), the other two stimulators of production of airway mucin. The results were as follows: (1) Caffeic acid, myristicin and rosemarinic acid inhibited the gene expression and production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively; (2) Among the three compounds derived from Perilla frutescens, only rosemarinic acid inhibited the production of MUC5AC mucin induced by EGF or $TNF-{\alpha}$, the other two stimulators of production of airway mucin. These results suggest that rosemarinic acid derived from Perilla frutescens can regulate the production and gene expression of mucin, by directly acting on airway epithelial cells and, at least in part, explains the traditional use of Perilla frutescens as remedies for diverse inflammatory pulmonary diseases.

Purification and Characterization of Anabaena flos-aquae Phenylalanine Ammonia-Lyase as a Novel Approach for Myristicin Biotransformation

  • Arafa, Asmaa M.;Abdel-Ghany, Afaf E.;El-Dahmy, Samih I.;Abdelaziz, Sahar;El-Ayouty, Yassin;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.622-632
    • /
    • 2020
  • Phenylalanine ammonia-lyase (PAL) catalyzes the reversible deamination of phenylalanine to cinnamic acid and ammonia. Algae have been considered as biofactories for PAL production, however, biochemical characterization of PAL and its potency for myristicin biotransformation into MMDA (3-methoxy-4, 5-methylenedioxyamphetamine) has not been studied yet. Thus, PAL from Anabaena flos-aquae and Spirulina platensis has been purified, comparatively characterized and its affinity to transform myristicin was assessed. The specific activity of purified PAL from S. platensis (73.9 μmol/mg/min) and A. flos-aquae (30.5 μmol/mg/min) was increased by about 2.9 and 2.4 folds by gel-filtration comparing to their corresponding crude enzymes. Under denaturing-PAGE, a single proteineous band with a molecular mass of 64 kDa appeared for A. flos-aquae and S. platensis PAL. The biochemical properties of the purified PAL from both algal isolates were determined comparatively. The optimum temperature of S. platensis and A. flos-aquae PAL for forward or reverse activity was reported at 30℃, while the optimum pH for PAL enzyme isolated from A. flos-aquae was 8.9 for forward and reverse activities, and S. platensis PAL had maximum activities at pH 8.9 and 8 for forward and reverse reactions, respectively. Luckily, the purified PALs have the affinity to hydroaminate the myristicin to MMDA successfully in one step. Furthermore, a successful method for synthesis of MMDA from myristicin in two steps was also established. Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to track the product formation.

ROLES OF HUMAN LIVER CYTOCHROMES P450 3A4 AND 1A2 IN THE OXIDATION OF MYRISTICIN

  • Yun, Chul-Ho;Lee, Hye-Suk;Lee, Hee-Yong;Yim, Sung-Kun;Kim, Keon-Hee;Yea, Sung-Su
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.137.1-137.1
    • /
    • 2003
  • Myristicin, 1-allyl-3, 4-methylenedioxy-5-methoxybenzene, is a naturally occurring alkenylbenzene compound. It is found in nutmag, mace, parsley, carrot, black pepper, many natural oils and flavoring agents. The aim of this work was to identify the form(s) of human liver cytochrome P450 (P450) involved in the hepatic transformation of myristicin to its major metabolite, 5-allyl-1-methoxy-2, 3-dihydroxybenzene (M1). (omitted)

  • PDF

Inhibition of Proinflammatory Cytokine Generation in Lung Inflammation by the Leaves of Perilla frutescens and Its Constituents

  • Lim, Hun Jai;Woo, Kyeong Wan;Lee, Kang Ro;Lee, Sang Kook;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.62-67
    • /
    • 2014
  • This study was designed to find some potential natural products and/or constituents inhibiting proinflammatory cytokine generation in lung inflammation, since cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) are pivotal for provoking airway inflammation. In our preliminary screening procedure, the 70% ethanol extract of the leaves of Perilla frutescens (PFE) was found to clearly inhibit TNF-${\alpha}$ production in the lung at 100 mg/kg, after intranasal lipopolysaccharide treatment of mice. Based on this result, ten constituents including phenylpropanoids (allyltetramethoxybenzene, caffeic acid, dillapiole, elemicin, myristicin, nothoapiole, rosmarinic acid methyl ester, rosmarinic acid) and monoterpenes (perilla aldehyde and perilla ketone) were successfully isolated from the extract. Among them, elemicin and myristicin were found for the first time to concentration-dependently inhibit IL-$1{\beta}$-treated IL-6 production from lung alveolar epithelial cells (A549) at concentrations of $10-100{\mu}M$. These findings suggest that the phenylpropanoids including elemicin and myristicin have the potential to be new inhibitory agents against lung inflammation and they may contribute, at least in part, to the inhibitory activity of PFE on the lung inflammatory response.

A Study for the Standardization of Elsholtzia ciliata (Thunb.) Hylander and Elsholtzia splendens Nakai ex F. Maekawa

  • Yun, Jong-Seong;Lee, Sang-In;Rhee, Jae-Seong;Park, Ho-Koon
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • The purpose of present study is to clarify the differences between EIslwitzia Ciliata (Thunb.) Hylander(향유) and Elsholtzia splendens Nakai ex F. Maekawa (꽃향유) for standardization and the proper usage as medicinal herbs. The major ingredients of both species were isolated by distillation and extraction. The qualitative and quantitative analyses of major distillates were carried out by the use of GC/MS. There was a significant difference between the components of Elsholtzia ciliata and Elsholtzia splendens in the aspects of major components. Several common ingredients were identified as linalool, cumene, elsholtzia ketone, naginata ketone isomer, naginata ketone, myristicin, and sesquiterpene alcohol. Comparison between Elsholtzia. ciliata and Elsholtzia splendens was done in the aspect of major compounds. Myristicin (33.7%) has been shown to be the major component in Elsholtzia ciliata whereas naginata ketone isomer (26.1%) was believed to be a major ingredient in Elsholtzia splendens. The elsholtzia ketone was also one of the major differentiating factors between Elsholtzia splendens and Elsholtzia ciliata, and the quantity is 15.1% in Elslwltzia splendens compared to 2.87% in Elsholtzia ciliata. Moreover, in the Elsholtzia splendens, 4- vinylguaiacol and isoosmorhizole were absent, but both compounds were present in the EIsholtzia ciliata.

  • PDF

Isolation of Hepatic Drug Metabolism Inhibitors from the Seeds of Myristica fragrans

  • Shin, Kuk-Hyun;Kim, Ok-Nam;Woo, Won-Sick
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.240-243
    • /
    • 1988
  • The hexane extract from Nutmeg, the seed of Myristica fragrans significantly inhibited hepatic drug-metabolizing enzyme activity. Through systematic fractionation by $SiO_2$ column and vacuum liquid chromatography monitoring by bioassay, three components, myristicin, (I), licarin-B (II) and dehydrodiisoeugenol (III) were isolated as active principles. Compounds II and III, with a single treatment (200mg/kg, i.p.) showed not only a significant prolongation of hexobarbital-induced sleeping time but also a significant inhibition of aminopyrine N-demethylase and hexobarbital hydroxylase activities in mice. Compounds I and II provoked a sleep episode at a subhypnotic dose of HB, suggesting that they possess CNS-depressant properties.

  • PDF

Analysis of Volatile Oil Components and Identification of Chemotypes in Jaso (Perilla frutescens) Collected in Korea

  • Ohk, Hyun-Chung;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.2
    • /
    • pp.97-101
    • /
    • 2004
  • Volatile oil components were analysed in Perilla frutescens accessions collected from different regions in South Korea and identified chemotypes based on the major volatile oil components. Major components out of 30 compounds identified were limonene, perillaldehyde, perillaketone, isoegomaketone, beta-caryophyllene, beta-farnesene, myristicin, and dillapiole. P. frotescens collections were classified into four chemotypes : PA type (57.7% limonene and 19.8% perillaldehyde), PK type (89.8% perillaketone), ST type (82.4% sesquiterpene, as 54.5% beta-caryophyllene and 27.9% beta-farnesene) and PP type (40.3% phenylpropenes as 13.6% myristicin and 26.7% dillapiole) and 37.8% sesquiterpenes. The majorities of P. frutescens collections in this study belong to PA type (41.9%) and PK type(38.8%).