• Title/Summary/Keyword: Myristica fragrans

Search Result 31, Processing Time 0.029 seconds

Adsorption of Cu(II) Ions onto Myristica Fragrans Shell-based Activated Carbon: Isotherm, Kinetic and Thermodynamic Studies

  • Syahiddin, D.S.;Muslim, A.
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.2
    • /
    • pp.79-86
    • /
    • 2018
  • This study reported the adsorption of Cu(II) ions onto activated carbon prepared from Myristica Fragrans shell (MFS AC) over independent variables of contact time, activating chemical (NaOH) concentration, initial adsorbate concentration, initial pH of adsorbate solution and adsorption temperature. The MFS AC structure, morphology and total surface area were characterized by FTIR, SEM and BET techniques, respectively. The Cu(II) ions adsorption on the MFS AC (activated using 0.5 M NaOH) fitted best to Freundlich adsorption isotherm (FAI), and the FAI constant obtained was 0.845 L/g at $30^{\circ}C$ and pH 4.5. It followed the pseudo first order of adsorption kinetic (PFOAK) model, and the PFOAK based adsorption capacity was 107.65 mg/g. Thermodynamic study confirmed the Cu(II) ions adsorption should be exothermic and non-spontaneous process, physical adsorption should be taken place. The total surface area and pore volume based on BET analysis was $99.85m^2/g$ and 0.086 cc/g, respectively.

Phenylpropanoids from Myristica fragrans Houtt (육두구(Myristica fragrans Houtt)로부터 Phenylpropanoid의 분리)

  • Song, Myoung-Chong;Ahn, Eun-Mi;Bang, Myun-Ho;Kim, Se-Young;Rho, Yeong-Deok;Kwon, Byuong-Mog;Lee, Hyun-Sun;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.47 no.3
    • /
    • pp.366-369
    • /
    • 2004
  • Myristica fragrans Houtt were extracted in 80% aq. MeOH and solvent fractionated sing $CHCl_3$, EtOAc, n-BuOH and water, successively. The n-BuOH fraction gave three phenylpropanoids through application of silica gel column chromatographies. The chemical structures of the phenylpropanoids were determined by the interpretation of several spectral data, including NMR and MS as meso-dihydroguaiaretic acid (1), nectandrin B (2) and syringin methyl ether (3). Compound 1, which was first isolated from this plant by authors, showed inhibitory activities with $60.0{\pm}2.1%\;(100\;{\mu}g/ml),\;42.6{\pm}0.9%\;(140\;{\mu}g/ml)\;and\;12.2{\pm}0.2%\;(200\;{\mu}g/ml)$ on ACAT(acyl-CoA:Cholesterol Acyltransferase), chitin synthase III and HMG-CoA reductase (3-hydroxy-3-methylglutaryl coenzyme A reductase), respectively. Compound 3 showed inhibitory activities with $27.2{\pm}0.9%\;(100\;{\mu}g/ml),\;45.5{\pm}0.8%\;(200\;{\mu}g/ml)$ on ACAT and chitin synthase III.

Compounds from the Seeds of Myristica fragrans and Their Cytotoxic Activity

  • Cuong, To Dao;Lim, Chae-Jin;Trang, Tran Thi Thu;Bae, Yoon-Ho;Thu, Nguyen Van;Tung, Nguyen The;Hung, Tran Manh;Woo, Mi-Hee;Choi, Jae-Sue;Min, Byung-Sun
    • Natural Product Sciences
    • /
    • v.18 no.2
    • /
    • pp.97-101
    • /
    • 2012
  • Six lignan compounds, 1-(17,21-dihydroxyphenyl)-9-(12,13-dihydroxyphenyl)-1-nonanone (malabaricone C) (1), 7'-(3',4'-methylenedioxyphenyl)-8,8'-dimethyl-7-(3,4-dihydroxyphenyl)-butane (2), 7'-(3',4'-dimethoxyphenyl)-8,8'-dimethyl-7-(3-methoxy-4-hydroxyphenyl)-butane (3), 7-(4-hydroxy-3-methoxyphenyl)-7'-(3',4'-methylenedioxyphenyl)-8,8'-lignan-7-methyl ether (4), (+)-erythro-(7S,8R)-${\Delta}^{8^'}$-7-hydroxy-3,4,3',5'-tetramethoxy-8-O-4'-neolignan (5), and (+)-erythro-(7S,8R)-${\Delta}^{8^'}$-7-acetoxy-3,4,3',5'-tetramethoxy-8-O-4'-neolignan (6), were isolated from the seeds of Myristica fragrans. The chemical structures of these compounds were determined on the basis of spectroscopic analyses including 2D NMR. Compounds 1 - 6 were evaluated for their cytotoxic activity against the HL-60, MCF-7, and A549 cancer cell lines in in vitro.

Antimicrobial Effects of Ethanol Extracts from Korean and Indonesian Plants (국내 및 인도네시아산 식물의 에탄올 추출물의 항균효과)

  • Kim, Moo-Sung;Lee, Dong-Cheol;Hong, Jong-Eun;Chang, Ih-Seop;Cho, Hong-Yon;Kwon, Yong-Kwan;Kim, Hee-Yun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.949-958
    • /
    • 2000
  • Antimicrobial effects of 150 kinds of Korean and 82 kinds of Indonesian plants were investigated to develope natural food preservatives. Extracts of the plants with 70% ethanol were tested their antimicrobial effects against several food spoilage microorganisms, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Seventeen kinds of Korean and eighteen kinds of Indonesian plants were found relatively effective, of which Myristica fragrans and Melaleuca leucadendra were the most effective, respectively. The major fractions of the two plant extracts showing antimicrobial activity were further purified by solvent fractionation, silicagel column chromatography and preparative HPLC. The purified substances were identified as limonene and caprylic acid in M. fragrans, and ${\alpha}-terpineol$ in M. leucadendra, respectively.

  • PDF

Biological Evaluation of Mace for Drug Metabolism Modifying Activity

  • Shin, Kuk-Hyun;Woo, Won-Sick
    • Korean Journal of Pharmacognosy
    • /
    • v.17 no.3
    • /
    • pp.189-194
    • /
    • 1986
  • The single acute treatment of mice with the steam distillate, non-volatile ether extract and methanol extract from mace, arils of Myristica fragrans(Myristicaceae) caused a significant prolongation of hexobarbital-induced narcosis, an increase in strychnine toxicity as well as a significant decrease in hepatic microsomal drug metabolizing enzyme activities. On seven daily consecutive administrations, however, the duration of narcosis was markedly shortened and significant increases in the hepatic enzyme activities were shown. From the non-volatile ether fraction, macelignan, a new lignan, mp $70{\sim}72^{\circ}$ was isolated as an active principle.

  • PDF

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.

Antibacterial and Sporicidal Activity of Macelignan Isolated from Nutmeg (Myristica fragrans Houtt.) against Bacillus cereus

  • Rukayadi, Yaya;Lee, Kwan-Hyoung;Han, Sung-Hwa;Kim, Sung-Kyung;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1301-1304
    • /
    • 2009
  • Macelignan is a bioactive compound isolated from nutmeg (Myristica fragrans Houtt.) which has been traditionally used for the food and pharmaceutical purposes. In this study, the activities of macelignan against vegetative cells and spores of Bacillus cereus were evaluated in vitro. Our results showed that the vegetative cells of B. cereus were significantly inhibited in growth by macelignan with minimum inhibitory concentration (MIC) of $4{\mu}g/mL$. The vegetative cells of B. cereus were completely killed with minimum bactericidal concentration (MBC) of $8{\mu}g/mL$ of macelignan. Killing time of macelignan against vegetative cells of B. cereus was very fast; endpoint of macelignan was reached after 4 hr of incubation at $4{\times}MIC$. Macelignan inactivated more than 3-log (99.9%) of spores/mL of B. cereus at the concentration of $100{\mu}g/mL$. Macelignan was found to be effective against vegetative cells and spores of B. cereus. These results suggest that macelignan might be good to be developed as a food preservative.

Inhibitory Effects of the Seed Extract of Myristica fragrans on the Proliferation of Human Tumor Cell Lines (육두구 추출물의 암세포증식 저해 효과)

  • Lee, Jung-Won;Lee, Sung-Ok;Seo, Jee-Hee;Yoo, Mi-Young;Kwon, Jee-Woong;Choi, Sang-Un;Lee, Kang-Ro;Kwon, Dae-Young;Kim, Young-Kyoon;Kim, Young-Sup;Ryu, Shi-Yong
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.3 s.142
    • /
    • pp.240-244
    • /
    • 2005
  • The methanol extract of the seed of Myristica fragrans (myristicaceae) demonstrated a potent inhibition on the proliferation of cultured human tumor cells such as A549 (non small cell lung), SK-OV-3 (ovary), SK-MEL-2(melanoma), XF498 (central nerve system) and HCT-15(colon). The MeOH extract was fractionated into three portions by serial solvent partition i,e., EtOAc soluble part, BuOH soluble part and remaining water layer. Among them, the EtOAc soluble part of the extract demonstrated a potent inhibition on the proliferation of cultured human tumor cells, Bioassay-guided fractionation of the EtOAc soluble part led to the isolation of six lignan constituents, i.e., safrole(1), machilin A (2), licarin B (3), macelignan (4), mesodihydroguaiaretic acid (5) and myristargenol A (6) as well as a large amount of myristic acid as active ingredients. Structures of the isolated active components (1-6) were established by chemical and spectroscopic means.