Browse > Article
http://dx.doi.org/10.5012/jkcs.2018.62.2.79

Adsorption of Cu(II) Ions onto Myristica Fragrans Shell-based Activated Carbon: Isotherm, Kinetic and Thermodynamic Studies  

Syahiddin, D.S. (Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University)
Muslim, A. (Department of Chemical Engineering, Faculty of Engineering, Syiah Kuala University)
Publication Information
Abstract
This study reported the adsorption of Cu(II) ions onto activated carbon prepared from Myristica Fragrans shell (MFS AC) over independent variables of contact time, activating chemical (NaOH) concentration, initial adsorbate concentration, initial pH of adsorbate solution and adsorption temperature. The MFS AC structure, morphology and total surface area were characterized by FTIR, SEM and BET techniques, respectively. The Cu(II) ions adsorption on the MFS AC (activated using 0.5 M NaOH) fitted best to Freundlich adsorption isotherm (FAI), and the FAI constant obtained was 0.845 L/g at $30^{\circ}C$ and pH 4.5. It followed the pseudo first order of adsorption kinetic (PFOAK) model, and the PFOAK based adsorption capacity was 107.65 mg/g. Thermodynamic study confirmed the Cu(II) ions adsorption should be exothermic and non-spontaneous process, physical adsorption should be taken place. The total surface area and pore volume based on BET analysis was $99.85m^2/g$ and 0.086 cc/g, respectively.
Keywords
Activated carbon; Myristica fragrans shell; Isotherm; Kinetic; Thermodynamic;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Srivastava, N. K.; Majumder, B. C. J. Hazard. Mater. 2008, 151, 1.   DOI
2 Hawkes, S. J. J. Chem. Educ. 1997, 74, 1374.   DOI
3 Dimple, L. Int. J. Environ. Res. Dev. 2014, 4, 41.
4 Yan-Biao, G.; Hong, F.; Chong, C.; Chong-Jian, J.; Fan, X.; Ying, L. Pol. J. Environ. Stud. 2013, 22, 1357.
5 Bala, M.; Shehu, R. A.; Lawal, M. J. Pure Appl. Sci., 2008, 1, 6.
6 Munaf, E.; Takeuchi, T. In Hazardous Waste Control in Research and Education; Korenaga, T.; Tsukube, H.; Shinoda, S.; Nakamura, I. Eds.; C. R. C. Press: Boca Raton, F. L., 1994.
7 Carl, L. K.; Harry, J. M.; Elizabeth, M. W. A review: The Impact of Copper on Human Health; International Copper Association Ltd.: New York, 2003.
8 Theophanides, T.; Anastassopoulou, J. Crit. Rev. Oncol. Hematol. 2002, 42, 57.   DOI
9 Tobin, J. M.; Roux, J. C. Water Res. 1998, 32, 1407.   DOI
10 Eccles, H. Trends Biotechnol. 1999, 17, 462.   DOI
11 Leung, W. C.; Wong, M. F.; Chua, H.; Lo, W.; Yu, P. H. F.; Leung, C. K. Water Sci. Technol. 2000, 41, 233.
12 Basso, M. C.; Cerrella, E. G.; Cukierman, A. L. Ind. Eng. Chem. Res. 2002, 41, 3580.   DOI
13 Wong, K. K.; Lee, C. K.; Low, K. S.; Haron, M. J. Chemosphere 2003, 50, 23.   DOI
14 Baquero, M. C.; Giraldo, L.; Moreno, J. C.; Suarez-Garcia, F.; Martinez-Alonso, A.; Tascon, J. M. D.; J. Anal. Appl. Pyrolysis 2003, 70, 779.   DOI
15 Gupta, H.; Gogate, P. R. Ultrason. Sonochem. 2016, 30, 11.
16 Minamisawa, M.; Minamisawa, H.; Yoshida, S.; Takai, N. J. Agric. Food Chem. 2004, 52, 5606.   DOI
17 Muslim, A.; Zulfian, Ismayanda, M. H.; Devrina, E.; Fahmi, H. J. Eng. Sci. Technol. 2015, 10, 1654.
18 Muslim, A.; Aprilia, S.; Suha, T. A.; Fitri, Z. J. Korean Chem. Soc. 2017, 61, 89.
19 Imamoglu, M.; Tekir, O. Desalination 2008, 228, 108.   DOI
20 Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Chem. Eng. J., 2009, 148, 480.   DOI
21 Demiral, H.; Cihan Gungor, C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 2016, 124, 103.   DOI
22 Klasson, K. T.; Wartelle, L. H.; James, E.; Rodgers, J. E.; Lima, I. M. Ind. Crop. Prod. 2009, 30, 72.   DOI
23 Moreno-Pirajan, J. C.; Giraldo, L. J. Anal. Appl. Pyrol. 2010, 87, 188.   DOI
24 Milenkovic, D. D.; Bojic, A. L. J.; Veljkovic, V. B. Ultrason. Sonochem. 2013, 20, 955.   DOI
25 Runtti, H.; Tuomikoski, S.; Kangas, T.; Lassi, U.; Kuokkanen, T.; Ram, J. J. Water Process Eng. 2014, 4, 12.   DOI
26 Ghaedi, A. M.; Ghaedi, M.; Vafaei, A.; Iravani, N.; Keshavarz, M.; Rad, M.; Tyagi, I.; Agarwal, S.; Gupta, V. K. J. Mol. Liq. 2015, 206, 195.   DOI
27 Muslim, A; Syamsuddin, Y.; Salamun, A.; Abubakar; Ramadhan, D; Peiono, D. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 1.
28 Muslim, A. J. Eng. Sci. Technol. 2017, 12, 280.
29 MapsofWorld, https://www.mapsofworld.com/world-topten/ nutmeg-producing-countries.html.
30 Yang, T.; Lua, A. J. Colloid Interface Sci. 2003, 267, 408.   DOI
31 Hesas, R. H.; Niya, A. A.; Daud, W. M. A. W.; Sahu, J. N. Bioresour. 2013, 8, 2950.
32 Bouhamed, F.; Elouear, Z.; Bouzid, J. J. Taiwan Inst. Chem. Eng. 2012, 43, 741.   DOI
33 Liu, X.; Wenbo Zhangn, W.; Zhang, Z. Mater. Lett. 2014, 116, 304.   DOI
34 Zengin, A.; Akalin, M. K.; Tekin, K.; Erdem, M.; Turga, T.; Karagoz, K. Ekoloji. 2012, 21, 123.   DOI
35 Demirbas, E.; Dizge, N.; Sulak, M. T.; Kobya, M. Chem. Eng. J. 2014, 148, 480.
36 Langmuir, I. J. Am. Chem. Soc. 1981, 40, 1361.
37 Freundlich, H. J. Phys. Chem. 1960, 57, 384.
38 Ahmad, R.; Kumar, R. J. Korean Chem. Soc. 2010, 54, 125.   DOI
39 Kobya, M.; Demirbas, E.; Senturk, E.; Ince, M. Bioresour. Technol. 2005, 96, 1518.   DOI
40 Bansode, R. R.; Losso, J. N.; Marshall, W. E.; Rao, R. M.; Portier, R. J. Bioresour. Technol. 2003, 89, 115.   DOI
41 Karagoz, S.; Tay, T.; Ucar, S.; Erdem, M. Bioresour. Technol. 2008, 99, 6214.   DOI
42 Mohan, D.; Gupta, V. K.; Srivastava, S. K.; Chander, S. Colloids Surf. 2001, 177, 169.   DOI
43 Rao, S. R. Surface Chemistry of froth flotation: Fundamentals; Springer Science: New York, USA, 2004.
44 Papirer, E. Adsorption on Silica Surfaces: Surfactant Science Series; Marcel Dekker, Inc.: New York, USA, 2000.
45 Kumar, A.; Awasthi, A. Bioseparation engineering; I. K. International Publishing House, Pvt. Ltd.: New Dehli, India, 2009.
46 Muslim, A.; Ellysa; Syahiddin, D. S. J. Eng. Technol. Sci. 2017, 49, 472.   DOI